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Hoof Lesions

* |n Canada, around 25-30% of cows have at least one
hoof lesion

* Hoof lesions compromise animal welfare

* Economic loss, costs associated with:
— Treatment of lesions
— Decreased cow performance
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How to Reduce Incidence of Lesions

* Improving management practices at herd level

* Through genetic selection

I DAIRY 4%
M at GUELPH 2

AAAAAA 'S DAIRY UNIVERSITY




Improving Hoof Health in Canadian Dairy Herds

* Project funded by the Dairy Research Cluster 2

— Dairy Farmers of Canada, Agriculture and Agri-Food
Canada, CDN, Canadian Dairy Commission

* Principal investigator: Dr. Filippo Miglior
(Canadian Dairy Network & University of Guelph)

* 2014-2017
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Objectives

Improve hoof health in Canada

1. Centralize data collected by hoof trimmers into a
coherent and sustainable national data base

— Standardize the hoof lesion data

— Develop a data pipeline: Hoof trimmers - CDHI - CON
2. Develop a DHI management report for producers
3. Develop genomic evaluations for hoof health
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Objectives

e Standardize the hoof lesion data collection
* Develop a data pipeline

Hoof trimmers - Canadian DHI - Canadian Dairy Network

 Develop a DHI management report for producers
* Develop genomic evaluations for hoof health

P DAIRY 4%




Standardize the hoof lesion data collection

Hoof Supervisor System
— Codes of lesion
— Severity
— Claws
— Zones

froof N
SU PERVISOR

System
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Claw Zones

@
PN

Axial (inside) view Abaxial (outside) view
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Sole Ulcer

Toe Ulcer

White Line Lesion
Sole Hemorrhage

Foot Rot

Digital Dermatitis
Heel Erosion
Interdigital Dermatitis
Corkscrew Claw
Vertical Fissure

Axial Fissure
Horizontal Fissure
Thin Sole

Interdigital Hyperplasia
Periople Ulcer

4
8
12
16
19
22
25
26
27
28
29
32
35
37
39

Standardize the hoof lesion data collection
Hoof Supervisor System -

Code Lesion Name

Codification

Page Zones

4
1
12,3
4,56
9
9,10
6
0,10
7
7,8
11,12
7,8
4,5
0
1



Participation of Hoof Trimmers

* 54 trimmers across Canada now routinely provide
hoof health data to Canadian DHI

* Additional trimmers invited to participate to the data
collection
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Objectives

e Standardize the hoof lesion data collection
 Develop a data pipeline

Hoof trimmers - Canadian DHI - Canadian Dairy Network

 Develop a DHI management report for producers

* Develop genomic evaluations for hoof health
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Data Pipeline

Herd .
inventory : H(?o
Interface / Canadian SIOI’IS

DHI

Hoof Canadian

Trimmers

Dairy

Network
Tr|m8|(11Ing ‘ ’ Weekly GEBV
e R Dairy for hoof health
eports Producers
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Objectives

e Standardize the hoof lesion data collection

* Develop a data pipeline

Hoof trimmers - Canadian DHI - Canadian Dairy Network

* Develop a DHI management report for producers
* Develop genomic evaluations for hoof health

B DAIRY A9
M at GUELPH

Bl CANADA'S DAIRY UNIVERSITY

11



DHI Management Report

* Working group with hoof trimmers, dairy advisors,
veterinarians and researchers

— To develop a new DHI management report on hoof health

* This report may include
— Prevalence of lesions on farm
— Trends over time
— Benchmarks with province and national averages

* Added value for trimmers and dairy producers

OtEp DAIRY‘
at GUELPH 12

AAAAAAAAAAAAAAAAAAAAAAA




Objectives

e Standardize the hoof lesion data

* Develop a data pipeline

Hoof trimmers - Canadian DHI - Canadian Dairy Network

* Develop a DHI management report for
producers

* Develop genomic evaluations for hoof health
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* Historical data from provincial projects up to 2012

* New pipeline data
— From summer 2015 for Quebec
— From early 2016 Ontario
— From mid 2016 for newly recruited trimmers

* Historical data from hoof trimmers

at GUELPH 14
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Research Outcomes

- Heritability and Repeatabillity of hoof lesions
- Effect of pre-selection of cows for trimming
» Correlations with conformation traits

« Severity vs. Binary

* Threshold vs. Linear Model

+ Single-step GBLUP
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Genetic Evaluation at CDN

Réseau laitier canadien
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Prevalence of Hoof Lesions

Digital dermatitis 17.4%

Interdigitaidermatitis
Interdigital hyperplasia

Heel Horn Erosion

Sole hemorrhage

Sole ulcer

Toe ulcer

White line lesion

0% 10% 20%
Prevalence of Hoof Lesions
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Digital Dermatitis Holsteins

» 307,172 records

« 127,729 cows

* 8,293 sires

« 332,561- animals in pedigree (4 generations)

Aim Is 10-20% of milk recorded cows
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Single-step GBLUP

« Single-trait (no indicators)
 Animal linear model with repeated observations (0/1)
 Single-step GBLUP using Mix99
* Environmental factors:

—  Herd-Trimming Session

—  Trimmer

—  Days after calving

—  Parity

Cow effect (PE)

DAIRY‘
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Single-step Model

* Genetic parameters:
— Heritability: 0.08
— Repeatability: 0.20

* Reference population (animals):
— All genotyped sires and cows that are in the pedigree

* Single-step: 19,459 animals
— 5,268 sires

— 7,178 cows
— 7,013 cows with data

OtEp DAIRY‘
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Genetic Evaluation

For bulls only:
* Genomic Estimated Breeding Values and Reliabilities

* Like all CDN functional traits, evaluations expressed as
Relative Breeding Values (RBV):
— mean =100 SD =5 for base sires

— reversed in sign: higher RBV indicate better resistance to
Digital Dermatitis
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Publication Criteria

» Digital Dermatitis proof of a sire official when:
— Minimum 5 herds
— Minimum reliability of 70%
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RBYV distribution

Proof % Healthy Records
Bottom 10 82 2.0 77 84 61 141 33 86

Top 10 114 1.7 112 117 93 /7.3 80 100
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* Hoof trimmers willing to share data and to develop a
standard recording protocol identified across Canada

* Routine flow of hoof lesion data from hoof trimmers
to Canadian DHI and to Canadian Dairy Network

* Genomic evaluations for Digital Dermatitis from
December 2017

* Soon DHI herd management report for Hoof Health
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Links with Conformation Traits

Rear side rear

Traits . Locomotion
view

Digital Dermatitis -0.28 -0.45
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Genetic and Genomic
Evaluation of Claw Health
Traits in Spanish Dairy Cattle

N. Charfeddine?, I. Yanez? & M. A. Pérez-Cabal’

1 CONAFE, Spanish Holstein Association, 28340 Valdemoro, Spain
2 Department of Animal Production, Complutense University of Madrid, 28040 Madrid, Spain
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O TG Why Claw health?

SLIINIZAFT= .

Claw disorders are one of Claw disorders are responsible for most lameness cases
. which compromise:
the main causes of : )
. . . Animal Productivit Fertilit
involuntary culling in Welfare y ) 4
Spanish dairy herds f , . | (
P Y | Feedand — \I’YIEI(.j — MAnestrus period
1.- Fertility water access production
2.- Mastitis —  J Comfort } — Milk quality} _ \LCo?actzption }
3.- Claw lesions ) :

—E — J Productive Iife} — “T'Days open

Feet & legs type traits fail in improving claw health

Interbull Annual Meeting, Auckland, New Zealand 2018 2



—“ONAFE Claw Health Recording

In 2012 was launched the Spanish program
for recording claw health data in order to
prevent and to control lameness

- CONAFE provides:
- A tactile PC-tablet
An electronic friendly application called DATPAT

An access to the national database

Herd reports and animal information

Training courses
- Trimmers should:

- Register at least 2,000 records per year during
trimming routine visits.

11/2/2018

Interbull Annual Meeting, Auckland, New Zealand 2018
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Objectives

" Implementation of a routine genetic evaluation
for claw health traits.

" Assessment of the accuracy of genomic proofs
for claw disorders in Spanish dairy cattle.
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Recorded claw disorders
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Seven claw disorders are recorded:

Dermatitis (DE) 10.07

Sole ulcer (SU) 11.37

White line disease (WL) 8.03

Interdigital hyperplasia (IH) 0.54

Interdigital phlegmon (IP) 0.95

Concave dorsal wall (CD) 1.50

Overall claw disorders 29.91 Scoring for each lesion:
=Corkscrew claws (CC) has being recorded since 2017 O : Absence

CD and CC are scored as 0/1 L mild
2 : severe

11/2/2018 Interbull Annual Meeting, Auckland, New Zealand 2018
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Evolution of Claw data
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Data Editing

Initial set of data: 628,228 records from 2012 to 2017
( In 1821 herds by 46 trimmers)
Data selection:

= Records before 2013 were eliminated

= Parity1to5

= Records from day 1 to day 500 after calving

= Only trimmers with at least 2000 records/year

= At herd level: Only herd-year with at least 30% of present cows trimmed

Final set of data: 441,248 records (34 trimmers)
Non trimmed cows were included: 81,228 records
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Genetic evaluation: Linear Models

2 multi-trait animal analyses:
- Scenario 1: Only claw disorders
- Scenario 2: Claw disorders and feet and leg type traits

= Claw disorders = Type traits
" Herd-year-season = Herd-visit-classifier
= |actation-age = |actation-age
= |actation stage = |actation stage
" Trimmer = Additive animal effect

= Permanent environmental effect
= Additive animal effect

Mix99 Software

11/2/2018 Interbull Annual Meeting, Auckland, New Zealand 2018
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Genomic evaluation: GBLUP with polygenic effect

Reference population: 1,317 bulls

e 2-step evaluation

* Polygenic effect: 30%

e 10-fold cross validation
* Mix99 software

11/2/2018 Interbull Annual Meeting, Auckland, New Zealand 2018 9
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Genetic Parameters

h
Feet & legs (F&L) 0.15
Rear legs rear view (RLRV)  0.13
Foot angle (FA) 0.09
Bone quality (BQ) 0.26
Locomotion (LOC) 0.12

11/2/2018

Interbull Annual Meeting, Auckland, New Zealand 2018
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Claw health index: ISP
Interdigital -
phlegmon Interd'g't‘—f‘l Economic weights for claw disorders.
Concave dorsal hyperplasia

1%

1% Clawdisorders  €/cow/year

wall

1% Dermatitis -9.30
Sole Ulcer - 44.00
White line disease -37.40
Concave dorsal wall -4.52
Interdigital phlegmon -3.55
Interdigital hyperplasia - 1.45

“Ivan Yanez (2017)

ISP net profit: 4.10€/cow/year

11/2/2018 Interbull Annual Meeting, Auckland, New Zealand 2018 11
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Proofs reliabilities

Bull with at least 20 daughters in 10 herds with Reliability > 50%

Average reliabilities (%) Scenario 1 Scenario 2 Rel gain (%)
Without type traits | With type traits

Dermatitis _
Sole Ulcer 68 75 _
White line disease 63 72 _
Concave dorsal wall 63 68 _
Interdigital phlegmon 50 66 _
Interdigital hyperplasia 67 81 _
5P 66 a [ 2%

11/2/2018 Interbull Annual Meeting, Auckland, New Zealand 2018



Correlations between EBVs with and without

11/2/2018
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type traits

EBVs were standardized to relative breeding values with a mean
of 100 and a standard deviation of 10 and reversed in sign

Pearson Spearman
correlations correlations

Dermatitis 0.98
Sole Ulcer 0.96
White line disease 0.91
Concave dorsal wall 0.92
Interdigital phlegmon 0.93
Interdigital hyperplasia 0.96
ISP 0.97

Interbull Annual Meeting, Auckland, New Zealand 2018

0.97
0.96
0.90
0.90
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Genetic Trends

Claw health index: ISP

Scenario 2: Sire
108 proofs including claw - /
o disorders and feet and \ //

104 legs type traits //
/ P

110

102 / 4

100 Scenario 1: L
Sire proofs

98 g 9 Lo
including only

96 claw disorders |

94

92 T T T T T T T T T

1999 2001 2003 2005 2006 2007 2008 2009 2010 2011

11/2/2018 Interbull Annual Meeting, Auckland, New Zealand 2018 14
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Validation of Genomic proofs

Results of 10-fold cross-validation

R2
Dermatitis 0.19
Sole Ulcer 0.34
White line disease 0.27
Concave dorsal wall 0.35
Interdigital phlegmon 0.36
Interdigital hyperplasia 0.15

ByALUE
0.72

0.99
0.94
0.94
1.03
0.76

(S.E.)

(0.11)
(0.08)
(0.10)
(0.08)
(0.08)
(0.15)

Interbull Annual Meeting, Auckland, New Zealand 2018
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Conclusions and Next steps

" Despite the low heritabilities, large genetic variation
between best and worst bulls is observed.

" The inclusion of feet and legs type traits in multi-trait
analyses increased reliabilities of claw disorders EBVs.

= Accuracy of genomic proofs are low to moderate.

Next Steps:
=" March 2018: Interim release for breeding companies

= June 2018: first official release



L”,{C%UNIVERSIDAD
L COONI//AN = f; 9 COMPLUTENSE CDI\UI%EEE@

el Grant agreements 4156558 and 4159203
Complutense University of Madrid
Spanish Holstein Association

11/2/2018 Interbull Annual Meeting, Auckland, New Zealand 2018 179999



Estimation of the heritability of a newly developed

ketosis risk indicator and the genetic correlations to
other traits in three German cattle breeds

H. Hamann!, A. Werner2, L. Dale?, P. Herold!

1 State Office for Spatial Information and Land Development Baden-Wirttemberg, Germany
2 Association for Performance and Quality Testing Baden-Wrttemberg, Germany
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Goal and derivation of the KetoMIR Index:

KetoMIR index:
based on logistic regression
numeric range between 0 and 1
partition in three classes

yhealthy“: 0.00 - 0.50
»IOW risk*: 0.50 - 0.75
y2highrisk“: 0.75 - 1.00
Calibration set Validation set
(n=109.479) (N=2.966)
Sensitivity: 0.70 0.72
Specificity 0.86 0.84
HLGL o

www.lgl-bw.de
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Probability functions of the KetoMIR index
and derivaton of KetoMIR classes

low risk ™~ high risk

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

30

20

10

prob. function

0

100 — high risk

80

60 /

40

20 / healthy
0 ——/ . . . . .

00 01 02 03 04 05 06 07 08 09 10

==LGL
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low risk

cum. prob. function
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Distribution of KetoMIR classes for
breeds and weeks in milk

Fleckvieh (Dual Braunvieh Deutsch Holstein
purpose Simmental) (German Brown) (German Holstein)
UL "I" B high risk
I 1 low risk

Il healthy

1 3 5 7 9 11 13 15 17 1 3 5 7 9 11 13 15 17

Weeks in milk

Slide 4, February, 11, 2018



Breeding strategies:

Selection against ketosis liability:

- based on a single (first) test day record (strategy 1)
woreaking® the peaks in the KetoMIR curve

- based on the average of several test day records (strategy I1)

wlowering“ the general level of the KetoMIR curve

l“ ' l
Bl .
D00 3 =S
0'!_ |4y '0“
oS
- w4

www.lgl-bw.de
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Breeding strategies
1.00

Initial curve (hypothetical)

0.75

0.50

KetoMIR Index

0.25

0.00
0 20 40 60 80 100 120

== LGL Days in milk
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Genetic analyses:

Data:

Fleckvigh:. 37.846 | ctations with information for the first three test
Braunvieh: _ 15.771 day records (analysed separately or as average)
Deutsch Holstein: 31.425

Repeatability model (within breed):
HYS, lactation number, days in milk, permanent
environmental effect, animal effect

2 LGL

www.lgl-bw.de

Slide 7, February, 11, 2018



Genetic analyses:

How is the KetoMIR index genetically related to other traits of interest?

Genetic correlations between KetoMIR index and traits for milk

components

TD Fleckvieh Braunvieh Deutsch Holstein

1 0.414 0.525 0.190

. . 2 0.251 0.354 0.195
Al 3 0.160 0.207 0.274
%] 0.276 0.394 0.200

1 0.412 0.386 0.391

2 0.343 0.307 0.279

SES 3 0.417 0.402 0.266
(%) 0.401 0.402 0.307

==LGL

www.lgl-bw.de
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Genetic analyses:

How is the KetoMIR index genetically related to other traits of interest?

Genetic correlations between KetoMIR index and traits for milk

components

TD Fleckvieh Braunvieh Deutsch Holstein

1 0.024 -0.077 0.002

Fat content 2 -0.280 -0.416 -0.262
3 -0.294 -0.460 -0.339

%) -0.194 -0.370 -0.190

1 -0.661 -0.765 -0.663

Protein content 2 -0.665 -0.709 -0.718
3 -0.557 -0.613 -0.686

%) -0.630 -0.680 -0.655

1 0.468 0.463 0.385

Fat-protein-ratio 2 0.152 0.108 0.187
3 0.055 -0.117 0.053

) 0.239 0.143 0.212

==LGL

www.lgl-bw.de
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Genetic analyses:

Data:

Fleckvigh:. 37.846 | ctations with information for the first three test
Braunvieh: _ 15.771 day records (analysed separately or as average)
Deutsch Holstein: 31.425

Multitrait model (within breed):
HYS, lactation number, days in milk, animal effect

2 LGL

www.lgl-bw.de

Slide 10, February, 11,
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Genetic analyses:

Heritabilities of the KetoMIR index (multitrait model)

1. lact. 2. lact. 3. lact.

Trait h2 h2 h2
Fleckvieh 1. TD/x. | 0.256 0.264 0.233
2. TD /x. 1 0.197 0.242 0.308
3. TD/x. 1 0.247 0.358 0.332
D/ x. L. 0.278 0.353 0.364
Braunvieh 1. TD/ x. | 0.176 0.155 0.171
2. TD/ x. | 0.278 0.272 0.332
3. TD/x. 1 0.246 0.318 0.252
@/ x. L. 0.289 0.374 0.348
Deutsch- 1. TD/ x. | 0.292 0.254 0.201
Holstein 2. TD/x. 1 0.371 0.416 0.415
3. TD/x. 1 0.302 0.298 0.263
@/ x.L. 0.385 0.351 0.309

==LGL

www.lgl-bw.de
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Genetic analyses:

Genetic correlations of the KetoMIR index between lactations

==LGL

www.lgl-bw.de

(multitrait model)

1.to 2. lact. | 1.to 3. lact. | 2. to 3. lact.
Trait r, r, r,

Fleckvieh  1.TD/x.I. 0.790 0.761 0.994
2. TD/ x. I. 0.978 0.967 0.966

3. TD/ x. I. 0.918 0.962 0.992

D/ x. L. 0.921 0.908 0.999

Braunvieh 1. TD/x. . 0.515 0.556 0.877
2. TD/ x. I. 0.655 0.835 0.903

3. TD/ x. I. 0.935 0.932 0.973

@/ x. L. 0.742 0.771 0.948

Deutsch- 1. TD/x. . 0.819 0.780 0.998
Holstein 2. TD/x. 1. 0.893 0.944 0.978
3. TD/ x. I. 0.819 0.861 0.935

A/x.L. 0.836 0.858 0.985

Slide 12,

February, 11, 2018




Conclusion:

Data collecting as a matter of the routine milk analyses
Genetic background of the KetoMIR index is proven

Mixture of multitrait and repeatability models
Decision of a breeding value evaluation for the KetoMIR index
- based on a single test day record

- based on the average of several test day records
Applying random regression models to the data

Calculation of economic weights

2 LGL

www.lgl-bw.de
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Thank you for your attention!

= LGL
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Genetic analyses:

Is the KetoMIR index (classes) heritable?

Heritabilities for the KetoMIR index, catecorical and binary classes

Fleckvieh (Dual Braunvieh Deutsch Holstein
purpose Simmental) (German Brown) (German Holstein)
TD |Index C3 BO050 B0O75 TD |Index C3 BO050 B0O75 TD |Index C3 BO050 B0O75
— N\ N\
1 ﬁ.zz 0.09 0.09 0.02 1 / 0.23\0.11 0.09 0.02 1 /0.24 0.13 0.12 0.04
2 || 0.22 p.04 0.05 0.01 2 || 0.28 .08 0.09 0.01 2 [ 0.28 0.12 0.12 0.02
3 || 0.30 p.04 0.05 0.01 3 | 034 p.11 0.11 0.01 3 | 039 0.13 0.13 0.01
@ )\ 0.30/0.08 0.08 0.01 ) \0.33 0.11 0.10 0.00 @ &).34 0.15 0.14 0.03
N N

==LGL

www.lgl-bw.de
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Genetic analyses:

How is the KetoMIR index genetically related to ketosis?

Genetic correlations between ketosis (clinical) and the KetoMIR index

and categorical classes

Fleckvieh Braunvieh Deutsch Holstein
TD Index C3 Index C3 Index C3
1 1000 1000 0.749 1000 0.438 0.522
2 .000 .000 0.376 0.368 0.045 0.122
3 .000 .000 0.070 -0.194 0.052 -0.065
%) 000 1000  0.240 0.153 0.319 0.445

==LGL

www.lgl-bw.de
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Genetic analyses:

Can the KetoMIR index be used as auxiliary trait in
breeding programmes?

- Is the KetoMIR index (classes) heritable? ‘/
- How is the KetoMIR index genetically related to ketosis? /

- How is the KetoMIR index genetically related to other traits of

Interest? ‘/

2 LGL

www.lgl-bw.de
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Genetic parameters of Immune
response estimated using
genetically divergent lines of
Holstein-Friesian dairy heifers

DairyNz®



Background

» Fertility research herd (Meier et al. 2017)
= ~540 Holstein-Friesian heifers (2015 born)
* From assortative mating of high or low fertility parents

» Research aims
= Underlying physiology driving fertility differences
= New management strategies
= New traits to predict fertility (h® = 0.03)

Dairynz?®




Immune Response (IR)

» Immunity impacts reproductive function
= |[mmune cells key to successful pregnancy (Fair 2015)
= Post-partum uterine recovery

> Previous IR studies:

= Heritability (h?): 0.16 to 0.64

(Mallard et al., 1983; Wagter et al., 2000;
Hernandez et al., 2006; Thompson-Crispi et al., 2012)

= Genetic Correlation (ry) with fertility: -0.19 to 0.20
(Thompson-Crispi et al., 2012)

Dairynz?®




Objectives

» Estimate genetic parameters in NZ Holstein-Friesian dairy
cattle:
= IR (3 traits) h=and r,

" IR ry with Breeding Worth (BW) index traits
* In NZ, BW composed of 8 traits (including fertility)

» Account for bias due to herd structure

Dairynz?®




Materials & Methods

» 539 Holstein-Friesian heifers
= Born across 379 herds (June-Sept 2015)

= From assortative mating of high/low fertility BV parents
- High & Low fertility heifer lines

» 7 “Contemporary Groups” (CG)
» Pedigree of 10,992 animals

= 18 generations deep

Dairynz?®




Materials & Methods

» Immunization protocol (Thompson-Crispi et al., 2012)

| . ~22 I
mn.1un|zed at. 0 days old AMIRO — Control covariate
= Antibody-mediated IR (AMIR) AMIR14

« HEWL @ days 0 & 14 / AMIR21
* 1gG1 conc. @ days 0, 14 & 21 7z

= Cell-mediated IR (CMIR)
« C. albicans/control @ day 21 CMIRc — Control covariate
« Log skinfold thickness ratio @ day 23 —> CMIRt — Response variate

} Response variates

Dairynz?®




Materials & Methods

> BLUP mixed model:
y = CG + control + a + e, y € {AMIR14, AMIR21, CMIRt, NEBV}

= Univariate model = h?

= Bivariate model > I

» Estimated Breeding Values (EBV) of BW:
= De-regressed (dEBV) by =+ reliability (Garrick et al. 2009)
= Noise added (nEBV) from N(0,0.°)
= 100 runs with noise re-sampling - mean r, + SE

Dairynz?®




Materials & Methods

» 1, between nEBV and IR also estimated via a
Pearson correlation
= Simple, and used as validation (no SE though)

» Explored herd divergence in fertility
» Pedigree determined to be deep enough

Dairynz?®




Results & Discussion

AMIR14 AMIR21 CMIRt

a— T
AMIR14 0.44+0.14 0.67+0.17 -0.44+0.43 ’
AMIR21 0.44 +0.04 0.47 +0.15 -0.07+0.40
CMIRt -0.03+0.05 0.01+0.05 0.11+£0.10

rp _/ S~ h2
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Results & Discussion

B o031 010022 -013:021 -0.39:0.31
Fat 033 -022+021 -010+021 -0.24+0.29
036 -012+020 -0.08+0.20 -0.40+0.32
T 035 015+017 -0.22+0.17 :

Fertility 003 009+022 -017+021 -0.04+0.32
SCS 012 005+025 003+0.25  0.10+0.39
RSV 0.04 003+062 -0.08+041 0.17+058
BCS 019 0024019 -015+0.18  0.19+0.27

Dairynz?®




Conclusions

» IR h2 low/moderate } An IR index should have
> AMIR & CMIR antagonistic | PoMAMIR &CMIR

» Weak genetic correlations between IR & BW traits
= |R unlikely helpful as predictor trait < including for Fertility
= Selection on IR or BW unlikely to affect each other

« Caution however, as r, generally unfavourable still

» Widespread IR recording impractical
- Genomic selection reference population

Dairynz?®
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Q& A
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Materials & Methods

* r,with EBV verified by Pearson correlation

oZR)*Gegy ) «— Resid. from bivar. fixed model;
cov(otn,0f 0.2 = 0,7 as EBV genetic est.

— SE not available

« Accounting for fertility divergence
— If divergence between lines present in founders, and
— If fertility rg>0 with trait X, then

— Model for X req. 2 gen. distributions
— Fertility line term (GG or fixed effect)

Dairynz?®




Materials & Methods

_  Distribution of
il E(;%c_ﬂf\,\:,v A-matrix heifer
/ High-High coefficients
— Apart from sibs, both

within- & between-line
~0.07

— .~ pedigree deep enough;
1 genetic distribution ok

mmo

Half-sibs

Dairynz?®



AMIR14 AMIR21 CMIRt

031 -010+£022 005 -013+021 -0.06 -0.39+0.31  -0.05

Fat 033 -0.22+0.21 -0.15 -0.10+0.21 -0.03 -0.24 £ 0.29 0.05

Volume 036 -0.12+0.20 0.00 -0.08 £ 0.20 0.02 -0.40 £ 0.32 -0.08
Liveweight 035 -0.15+0.17 -0.16 -0.22 +0.17 -0.18 : 0.33
Fertility 0.03 0.09+0.22 0.10 -0.17+£0.21 -0.05 -0.04 £ 0.32 -0.07
SCS 0.12 0.05+0.25 -0.01 0.03+0.25 -0.03 0.10+£0.39 0.06
RSv 0.04 0.03+0.62 -0.01 -0.08 £ 0.41 -0.01 0.17 + 0.58 0.19

BCS 0.19 0.02+0.19 0.05 -0.15+0.18 -0.09 0.19+0.27 0.08

Dairynz?®




Improved genetic evaluation of
health traits using metabolic
biomarkers in Nordic dairy cattle

E. Rius-Vilarrasal, W.F. Fiksel, E. Carlén?, J-A. Eriksson?, J. P6so2?, U.S.
Nielsen3, G. P. Aamand*

lvaxa Sverige, Uppsala, Sweden

2 Faba co-op, Vantaa, Finland

3SEGES, Aarhus N, Denmark

“Nordic Cattle Genetic Evaluation, Aarhus N, Denmark

NAV Interbull meeting 2018, New Zealand
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Health traits evaluations

UDDER HEALTH
Clinical mastitis , Cell count (indicator trait)
Udder conformation (indicator traits)

CLAW HEALTH

Claw diseases (trimmers)

GENERAL HEALTH

Reproductive-, Metabolic disorders,
Feet and Leg problems -- Clinical mastitis,
metabolic biomarkers (BHB & Acetone indicator traits)

== am T= Nordisk Avisvaerdi Vurdering * Nordic Cattle Genetic Evaluation




Health traits evaluations

UDDER HEALTH
Clinical mastitis , Cell count (indicator trait)
Udder conformation (indicator traits)

CLAW HEALTH

Claw diseases (trimmers)

GENERAL HEALTH

)
N8
(?B Reproductive-, Metabolic disorders,
.a/
- ."

Feet and Leg problems -- Clinical mastitis,
metabolic biomarkers (BHB & Acetone indicator traits)
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General Health index

GH index = Early Reproductive Disorders (ERP)

+ Late Reproductive Disorders (LRP)
+ Feet & Leg Problems (FLP)

+ Ketosis (KET)

+ Other Metabolic Disorders (OMB)

NAV
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General Health index

GH index = Early Reproductive Disorders (ERP)

+ Late Reproductive Disorders (LRP)
+ Feet & Leg Problems (FLP)

Metabolic | + Ketosis (KET)
Disorders | 4 Other Metabolic Disorders (OMB)

NAV
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General Health index

GH index = Early Reproductive Disorders (ERP)
+ Late Reproductive Disorders (LRP)
+ Feet & Leg Problems (FLP)

+ Ketosis (KET)
+ Other Metabolic Disorders (OMB)

Metabolic Biomarkers - New indicator traits




Metabolic Biomarkers

Ketone bodies detectable in milk samples:

B-hydroxybutyrate (BHB) & Acetone

NAV
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Metabolic Biomarkers

Ketone bodies detectable in milk samples:

B-hydroxybutyrate (BHB) & Acetone

Leading to ketosis:

Tt LR B |

Milk —> Energy —> Moblllzatlon

production demand Feed intake

Decreased
milk DIM

production 10-60

N
handling fat |k NENCELS
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Data — Disease traits

Treatment records since the 80’°s

Veterinarians, Al technicians and Farmers

* Breeds: Holstein, Jersey and Red Dairy Cattle (RDC)
« Lactations 1-3

* Defined as binary 0/1 trait

Healthy
non-treated

Sick
treated

NAV
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Data - BHB and Acetone

e Since 2013 — Denmark
* From 2018 - Finland and Sweden

* Routine predictions from milk samples
collected within the milk recording
scheme — mmol/L

 Lactations 1-3 Acetone

BhB 0
OH O H3C)I\<:H3
NAV H3C/K)I\OH
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Trait definitions

Ketosis
Other metabolic disorders
Feet and leg problems (+ clinical mastitis)

-15 0 10 40 60

NAV

305

=m sm T~ Nordisk Avisveerdi Vurdering * Nordic Catt




Trait definitions

Early Reproductive

disorders Late Reproductive disorders

Ketosis
Other metabolic disorders
Feet and leg problems (+ clinical mastitis)

-15 0 10 40 60

NAV

305

=m sm T~ Nordisk Avisveerdi Vurdering * Nordic Catt



Trait definitions

BHB
Acetone

Early Reproductive

disorders Late Reproductive disorders

Ketosis
Other metabolic disorders
Feet and leg problems (+ clinical mastitis)

-15 0 10 40 60

NAV

305

=m sm T~ Nordisk Avisveerdi Vurdering * Nordic Catt



MO d el = Multi-trait multi-lactation animal model

Fixed effects (fixed) Regression

Herd-year * country Lactation stage
(only BHB/Acetone)

Breeds and heterosis
(only HOL)

Calving age * country
Year-month calving * country
Random effects

Animal

Cow Permanent environmental
effect (only BHB/Acetone)

NAV **Pre-adjustment for heterogeneous variance
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Heritabilities and genetic correlations
Holstein, lactation 1

Early Late Other
reproductive reproductive metabolic Ketosis
disorders disorders  disorders

Feet and leg
problems

Early reproductive 0.020 0.40 0.40 0.29 0.35

disorders
Late reproductive

disorders 0.010 0.29 0.21 0.36
Other metabolic

disorders 0.006 0.74 0.38

Ketosis 0.012 0.19
Feet and leg
problems 0.010

Low heritabilities & low, moderate to high
genetic correlations



Heritabilities and genetic correlations
Holstein, lactation 1

Early Late Other
reproductive reproductive metabolic Ketosis
disorders disorders  disorders

Feet and leg
problems

Early reproductive 0.020 0.40 0.40 0.29 0.35

disorders
Late reproductive

disorders 0.010 0.29 0.21 0.36
Other metabolic

disorders 0.006 0.38

Ketosis 0.012 0.19
Feet and leg
problems 0.010

Low heritabilities & low, moderate to high
genetic correlations



Heritabilities and genetic correlations
Holstein, lactation 1

Other Ketosis BHB  Acetone

metabolic

disorders
Other
metabolic 0.006 0.74 0.48 0.65
disorders
Ketosis 0.012 0.65 0.76
BHB 0.15 0.88
Acetone 0.06

Low to moderate heritabilities & high genetic correlations



Heritabilities and genetic correlations
Holstein, lactation 1

Other Ketosis BHB  Acetone

metabolic

disorders
Other
metabolic 0.006 0.74 0.48 0.65
disorders
Ketosis 0.012 0.65 0.76
BHB 0.15 0.88
Acetone 0.06

Low to moderate heritabilities & high genetic correlations



Heritabilities and genetic correlations
Holstein, lactation 1

Other Ketosis BHB  Acetone

metabolic

disorders
Other
metabolic 0.006 0.74 0.48 0.65
disorders
Ketosis 0.012 0.65 0.76
BHB 0.15 0.88
Acetone 0.06

Low to moderate heritabilities & high genetic correlations



Value of including BHB & acetone

Reliabilities for cows with or without BHB and
Acetone observations, that have veterinary treatment
observations but not own progeny

Breed BHB & Other
Acetone Metabolic Ketosis GH index
obs disorders
HOL Yes 0.34 o 0.36 0.32
19% 6%
NO 029 7 029 7 030°7
NAV
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Summary

* New objective indicator traits for Ketosis in the
General Health evaluation

« Diagnosis for subclinical and clinical ketosis

NAV
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Summary

* New objective indicator traits for Ketosis in the
General Health evaluation

« Diagnosis for subclinical and clinical ketosis

« Metabolic biomarkers showed favorable and high
genetic correlations with Ketosis

NAV
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Summary

* New objective indicator traits for Ketosis in the
General Health evaluation

« Diagnosis for subclinical and clinical ketosis

« Metabolic biomarkers showed favorable and high
genetic correlations with Ketosis

» Higher heritability of BHB and acetone than for
Ketosis

NAV
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Summary

* New objective indicator traits for Ketosis in the
General Health evaluation

« Diagnosis for subclinical and clinical ketosis

« Metabolic biomarkers showed favorable and high
genetic correlations with Ketosis

» Higher heritability of BHB and acetone than for
Ketosis

 The inclusion of the metabolic biomarkers increases
cow EBV reliability, especially for ketosis and
metabolic disorders

NAV
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Summary

* The new General Health evaluation was
Introduced November 2017 for all breeds
(Holstein, RDC and Jersey)

NAV
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NAV
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November 2017

Disease traits and sub-traits used in the
GH evaluation

Early reproductive Late reproductive , Other metabolic Feet and leg
disorders disorders diseases problems
e Retained e Hormonal + Ketosis e Milk fever |e Feet and
placenta reproductive legs
disorders - BHB e Other disorders
e Hormonal (B-hydroxybutyrate ) metabolic
reproductive e Infective diseases
disorders reproductive  Acetone
disorders e Other feed
e Infective related
reproductive e Other disorders
disorders reproductive
disorders e Other
e Other diseases
reproductive
disorders

NAV
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Disease frequencies in % - HOLSTEIN

Traits DNK SWE FIN
ERP 2 3
LRP 4 8
KET 5 <1 2
OMB 2-9* 1-7 2-8
F&L 8 3 2

*Lactation 1 to lactation 3

NAV
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Disease frequencies in % - RDC

Traits DNK SWE FIN
ERP 8 2 3
LRP 2 6 12
KET 1-4* <1 1
OMB 1-7 1-5 1-6
F&L I 2 2

*Lactation 1 to lactation 3

NAV
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Disease frequencies in % - Jersey

Traits DNK
ERP 3
LRP 2-3*
KET 2-3
OMB 2-15
F&L 5-7

*Lactation 1 to lactation 3

NAV
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Alternative use of Somatic Cells Counts in genetic
selection for mastitis resistance: a new selection
index for Italian Holstein breed

R. Finocchiaro?, G. Visentin?, M. Penasa?, J.B.C.H.M. van
Kaam?, M. Marusi?, G. Civati* & M. Cassandro?

1ANAFI - Italian Holstein Association
2 DAFNAE - University of Padova LA l ' eco
N

Interbull Open 3: R&D in (inter)national evaluations: Implementation of new traits in dairy and beef cattle.




CONTEXT

- Mastitis is one of the major diseases in
dairy herds

- It induces economic costs for breeders
mainly due to worsening of milk yield, milk
quality and increase of health care cost

- Somatic cell count (SCQ) is an indicator of |
both resistance and susceptibility of cows | 1
to intramammary infections ?% ¥

ol

Interbull Open 3: R&D in (inter)national evaluations: Implementation of new traits in dairy and beef cattle.



IDENTIFICATION OF MASTITIS

v' DIRECT MEASURES corresponding to the diagnosis of
inflammation with a positive bacteriological examination
and observation of clinical cases

Accurate
Repeated and expensive tests on a large scale

v INDIRECT MEASURES linked with inflammation of the
udder
Somatic Cell Count (SCQ)
Electrical conductivity of milk

Cell differentiation (e.g. lymphocyte, macrophages and
polymorphonuclear neutrophils)

Interbull Open 3: R&D in (inter)national evaluations: Implementation of new traits in dairy and beef cattle.



MASTITIS RECORDING SYSTEM

 Mastitis is not widely implemented in disease-recording
systems in many countries

- Lactation-mean SCC or test-day SCC are generally used as
indirect mastitis indicators

- Other traits derived from SCC have been suggested as
alternatives to improve/implement genetic evaluations for
mastitis resistance, such as:

* maximum SCC
* standard deviation of SCS
* SCC peaks pattern

Interbull Open 3: R&D in (inter)national evaluations: Implementation of new traits in dairy and beef cattle.



WHAT HAPPENS IN THEWORLD

...INTERBULL DATA...and udder health data
* Two type of EBVs are considered by Interbull:

- Somatic cell score (SCS)

- Udder health (MAS) —> as trait
—> when missing same as SCS
field

* Intotal 29 countries send SCS info

* Only 5 countries provide udder health (MAS) info
(Canada, Scandinavian countries, France, The
Netherlands and Italy)

Interbull Open 3: R&D in (inter)national evaluations: Implementation of new traits in dairy and beef cattle.



WHAT HAPPENS INTHEWORLD

h2 h2

Count Udder health ind
OUntry srneaith inaex «Udder health index»  «Clinical Mastitis»
0,25%*CM_,+0,25*CM_,+
0 - =0
DFS 0,30*CM,+0,20*CM, 6% 3-7%
France 0,60*SCS + 0,40*CM 15% 2%
The Netherlands 0,40*SCM+0,60*CM 9% 6%
Canada Y, CM, + 1/3CM2 +7, SCS 15% 3-5%
0
ltaly Predicted traits for CM 15% 3%

CM-=clinical mastitis; SCS=Somatic Cell Score; SCM=Sub-Clinical Mastitis



215, ANAF
AIM

Setup a new Udder Health Index for Mastitis
Resistance using indicators derived from SCC

test-day

Interbull Open 3: R&D in (inter)national evaluations: Implementation of new traits in dairy and beef cattle.



SCC PATTERN EXAMPLE

...... It's important to realize the trend of cells during
lactation... I

( \

Constant (Cow 2) Fluctuating (Cow 1)

1200

1100 n‘
= 1000
E 900 f\
800
700
600
500
400
300

200
100

==COoW2

<B-Cow1l

SCC (x 1000 cells/

0o 50 100 150 200 250 300 350
Days in Milk




DATA-EDITING

« Only first parity cows (for the moment)
- Cows with at least 3 TDscc records,

- Cows with 15t TD < 60 days after calving
- CowsTDs interval <70 days

Within lactation SCC patterns have been defined:
« L="Low" (<100,000 SCC/mL)
| ="Intermediate” (100,000-400,000 SCC/mL)
« H="High"” (> 400,000 SCC/mL)

- Several samples distributed in the population were analyzed in order
to get an idea of trend repeatability

Interbull Open 3: R&D in (inter)national evaluations: Implementation of new traits in dairy and beef cattle.



21, ANAF
STEP 1:

NOVEL TRAITS DEFINED TO CAPTURE DIFFERENT

ASPECTS OF MASTITIS

SCS Average SCS from 5 to 150 days of lactation

150

SCS

151-305
SCSTOTAL

Average SCS from 151 to 305 days of lactation

Average SCS in the entire lactation

(o/1): 1 = cow with at least 2 TD identified as | or H within
lactation

SCS_SD SCS Standard deviation within lactation
SEVERITY of infection

(%)

PEAK Presence of peaks L-H-L or L-H-H within lactation

INFECTION

Ratio between n°TD H and the total n® of TD within lactation

0 = no peaks
1 = at least one of the two peaks

ST
T
e T
J

g

Interbull Open 3: R&D in (inter)national evaluations: Implementation of new traits in dairy and beef cattle.



STEP 2: VALIDATION ON REAL DATA

- Once indicators traits have been defined, these have been validated on a “robust”
sample data-set well distributed in the Italian territory with direct mastitis
information

- Those with the strongest genetic correlation with clinical mastitis have been
retained.

- The new udder health index (MST) was built following selection index theory in order
to estimate appropriate weights to combine the alternative traits in the MST
aggregate udder health index

Interbull Open 3: R&D in (inter)national evaluations: Implementation of new traits in dairy and beef cattle.



RESULTS

Trait Mean SD h?2 ry
Clinical mastitis 0,09 0,28 0,03

SCS150 2,58 1,37 0,06 0,39
SD_SCSt 1,20 0,62 0,02 0,44
Severity of infection 0,11 0,19 0,07 0,41
Peaks pattern 0,10 0,31 0,02 0,51

Interbull Open 3: R&D in (inter)national evaluations: Implementation of new traits in dairy and beef cattle.
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RESULTS | Correlation ___

MST vs. SCS 80 %
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BULLS GENETIC TREND
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CONCLUSIONS

« The new index (MST) DOES NOT REPLACE the current SCS

Index but it is a new tool to select DIRECTLY for clinical
mastitis

 This index has been published for the first time during
December 2017 evaluation with mean 100 and standard
deviation 5.

- Initially this index will be published only for national and
international bulls (no genomics).

- Currently only first parity cows

Interbull Open 3: R&D in (inter)national evaluations: Implementation of new traits in dairy and beef cattle.



FUTURE PERSPECTIVES

- Pluriparous cows and Genomic evaluation - gMace

- Increase mastitis data-set

- Use of differential cells? - Combine all new info

Interbull Open 3: R&D in (inter)national evaluations: Implementation of new traits in dairy and beef cattle.



THANKS FOR YOUR
ATTENTION!

We love happy cows!
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Breeding for resistance against Paratuberculosis:
Genetic relation between antibody response and
faecal shedding of MAP In dairy cattle

L.C.M. de Haer, M.F. Weber, G. de Jong
CRV and GD Animal Health: The Netherlands



What 1s Paratuberculosis?

Paratuberculosis is a chronic intestinal infection of
ruminants caused by Mycobacterium avium ssp.
Paratuberculosis (MAP).

Infections will develop slowly Into: w
 chronic intractable diarrhea |
« weight loss

production losses

low birth weight of calves
ultimately death since no
treatment is available

Cerv ’

.........

-
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Economical importance

In The Netherlands in 2008:

47% of farms had at least one positive animal
2.4% of all animals was positive

Economical loss:
770,- euro/year per herd (50 animals) with infected cows

For every animal that develops clinical signs
— there will be 7 to 10 animals excreting
— there will be a further 7 to 10 infected, but not yet excreting

(possibly excreting in the future)

&RV



rls breeding against Paratbc possible?

« Goal Is reduction of faecal shedding of MAP
« Tool Is antibody response in milk

-> Are genetic variations of antibody levels and faecal
excretion present?

-> |s a lower antibody level in milk related to less
faecal shedding?



Data

Causative agent of paratuberculosis:
Mycobacterium avium ssp. Paratuberculosis (MAP)

Two data sets:
1) Individual milk samples tested by Elisa for
antibodies against MAP (trait=PA1)

2) Individual faecal samples tested for MAP bacteria
(trait=PA2)

Cery °



Method

« Estimation of genetic parameters for PA1 and PA2

« Estimation of genetic correlation between breeding values
for PA1 and PA2




I Results: genetic effects

PAL PA2
02, 0.004 0.005
02 erm 0.033 0.021
0? 0.081 0.081

repeatability 0.42 (0.003) 0.28 (0.006)
h2 0.05 (0.003) 0.06 (0.008)

Heritability and genetic variation indicate possibilities for
selection.

&RV



l Genetic correlation

* Genetic correlation between breeding values
estimated with milk (PA1) and faecal (PA2)
analyses

» Genetic correlation was estimated, accounting
for differences Iin repeatabllity of breeding
values (MACE)

« Sires have at least 15 daughters

 Genetic correlation PA1-PA2: 0.81
&Rv

10



rlmplications

 Genetic standard deviation for ELISA test
(antibody levels): 0.063

* Increase in breeding value means decrease in
antibody levels

« Using a bull with 1 genetic standard deviation
higher breeding value: 2.8% less daughters
tested positive

12
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Heat Tolerance ABV
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What is heat tolerance?

' ."\4" .' Cow A

tolerates heat
better than

Cow B

Temperature — Humidity Index (THI)

Al DataGene  smeurneRgons

Your Levy at Work l Solutions for Herd Development



How to estimate genomic breeding value for heat tolerance?
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How to estimate genomic breeding value for heat tolerance?

Selection Candidates
-wp TR
R - TR
. ;\Aa;l:er i) ‘;
genotypes

Reference Population

‘v.ﬂ! ‘-.“! i

A
Kno;vn genot;pes TW

and phenotypes

Prediction Equation
I Genomic breeding value =
txq + tHX; + t3x3 + ...

Selected Breeders

Productio

THI

Using genomic
breeding values

AGRICULTUREVORIA

Economic Development,
Jobs, Transport
‘and Resources



Heat tolerance ABVg reliability:
Average 38%
in Holsteins and Jerseys

Sorpsson % Ralry . D a‘taGene Aemcuurumwoam

Your Levy at Work . Solutions for Herd Development



Validation experiment

* 400 heifers screened

« 24 predicted most heat tolerant, 24 predicted most
susceptible selected on GEBV

* Run through a simulated heat wave event at Ellinbank

» 4 day event, measure milk production, core
temperature

%Rﬁ“&m]ja DataGene  smeurneRgons

Your Levy at Work l Solutions for Herd Development



Validation experiment

Decline in milk production
1.0

Change in milk yield (L/cow/day)

0.0

-1.0

-2.0

-3.0

-4.0

-5.0

%k k

Day 1

Day 2

Day 3

Day 4

Recovery

mHT

-0.3

-0.3

-0.9

-2.6

-1.2

mHS

-0.2

-0.6

-1.1

-3.9

-2.3

Australia
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Validation experiment

Difference in intra-vaginal temperature

* %k

405 -

40 -

= Heat Tolerant
Heat Susceptible

JJntra-vaginal tempgrature (°C)

10:00 AM
4:00 PM
10:00 PM
4:00 AM
10:00 AM
4:00 PM
10:00 PM
4:00 AM
10:00 AM
4:00 PM
10:00 PM
4:00 AM
10:00 AM
4:00 PM
10:00 PM
4:00 AM
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Expression of heat tolerance ABVg

Standardise

e Using e Mean =100
economic e Standard
weight of milk, deviation = 5
fat and protein
\ Y, \ Y,

%R{T""@Ha DataGene  smeurneRgons

Your Levy at Work l Solutions for Herd Development



Heat tolerance ABVg

%

—y
\.\ = 5100
An animal with a Heat Tolerance ABV of ~
~

. . Average =100
105 is 5% more tolerant to hot, humid
conditions than average. N 100

Production

Temperature-Humidity Index

i % Rﬁlryl li Da'taG e I"] e Aomcuurumwonu

and Resources
Your Levy at Work l Solutions for Herd Development



Genetic trend (decline ~1.5 SD in 20 years)

Economic Development,
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Heat tolerance ABVg
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Cool cows toolbox

Dai
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‘ Cool Cows
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wil Telstra Wi-Fi Call &  8:36 pm JoR[_ )
230 Bulls

- @ GED -
Heat.

BULL v BPI

7HO11395

29H017732

Advice to farmers

SUPERDUDE

29H017387

* Choose bulls from the Good
Bulls Guide

* If Heat Tolerance is important,
select above average bulls

MURCIELAGO

011HO11505

CRVEASTON



What did farmers say?

. DataGene

Solutions for Herd Development



Trevor Parrish, New South Wales

“Now when | get a list
of bulls I'm going to
be looking for bulls
which combine
iIncreased production
and increased heat
tolerance — they are
going to be the ones
who buck the trend.”

DataGene

l Solutions for Herd Development



Ray Kitchen, Boyanup, Western Australia

.

“Having a Heat
Tolerance ABV will mean
we can breed cows with
a greater ability to
tolerate hot weather, be
better suited to our
farming environment.

“We will be looking for
the bulls that pull
together production and
heat tolerance.”

DataGGene

l Solutions for Herd Development



Shane Gardiner, Mt Gambier South Australia

“Heat Tolerance is something we can
breed in our cows for free so why not? Like
all genetic traits, it will be permanent and

cumulative.”

Data

l Solutions for Herd Developmént



Ross Gordon, Cohuna, Victoria

“If two bulls have the
same BPI but one has
better heat tolerance
than that’s the one we
will be selecting”

DataGGene

l Solutions for Herd Development



lan Scott, Nanango, Queensland

“We can send a man to
the moon but we can't
control the weather so
we need to do everything
possible to make things
better for the cows,
which includes breeding
cows with good heat
tolerance.”

Data(Gene

l Solutions for Herd Development



The Heat Tolerance ABYV identifies animals with greater ability
to tolerate hot, humid conditions with less impact on milk
production

Released in December 2017

Validated in research conditions

The Heat Tolerance ABV is unfavourably correlated with
production but there are high Balanced Performance Index
bulls that are also above average for Heat Tolerance m.cuuu..s‘g!om



Thank you!
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Effect of heat stress on production traits of
Holstein cattle in Japan:
parameter estimation using test day records of
first parity and genome wide markers

Y. Atagil, A. Onogi!, T. Osawa?, T. Yasumori3, K. Adachi?, S. Yamaguchi3, M.
Aihara3, H. Goto?3, K. Togashi® and H. lwata?!

1 The University of Tokyo, Japan
2 National Livestock Breeding Centre, Japan
3 Livestock Improvement Association of Japan, Inc., Japan



Japan map of Koppen climate classification

* Hokkaido, the biggest domestic dairy
production area

e Heat stressis minimal

— ¢ Heat stress affects dairy production
in South west of Japan

\Warm continental climate/
Humid continental climate (Dfa)

| Temperate continental climate/
Humid continental climate (Dfb)

s Warm oceanic climate/
Humid subtropical climate (Cfa)

Bl Temperate continental climate/
Humid continental climate (Dwb)

_nJ

From Wikipedia on 8Feb, 2018



Record processing

* phenotypes (Apr1987-Nov2015)

* in 233 dairy farms with genotyped cows

e genotype
e impute 20,411 cow LD records using Beagle 3
e with 50K records (2849 bulls and 2598 cows)

farms were linked with meteorological offices based on their areas for the announcement
of weather forecasts

calculate Temperature-Humidity Index (THI) at meteorological offices
THI =(1.8xT, +32)—(0.55—-0.0055x RH ) (1.8x T, — 26)
T,: dry bulb temperature (Celsius), RH : relative humidity (%)

each phenotype was linked to the average (THI) up to 4 days before test day

Heat stress
* defined as decreased production at THI > 60



Summary of records

Traits

genotyping

Chip used for Milk, Fat and SCS

Protein

with genotypes

Test day records, n - 820,573 752,514
Total 93,725 86,435
Cows (female with HD 807
records) LD* 363
- 92,555 85,265
: HD 3,126
Bulls (Sire of cows) - 2229
Females with genotypes HD 1,791
but without records LD* 1
Males other than bulls HD 2,313

Other animalsin a
pedigree

106,843 101,777

X LD genotypes:
only cows with
records and their
dams to reduce
equation size



Random regression test day model

Yisamo = HTDT; + M W+ Aw+hyv+ pe z+ peh, - f (THI)+u z+uh, - f(THI)+e
* YViamo : test day milk, fat, protein (kg), Somatic Cell Score

ijklmno

 HTDT;: fixed effect of herd*test day*milking frequency

* M, :fixed regression coefficients of calving month

A :fixed regression coefficients of calving age

« hy, :random regression coefficients of herd*calving year (HY) effects

* pe, :random regression coefficients of general permanent environment (PE) effects
* peh, : random linear regression coefficient of PE effect of heat tolerance

e U, :random regression coefficients of general additive genetic (AG) effects

« U, : random linear regression coefficient of AG effects of heat tolerance

* €umo: random residuals at DIM: 6-35, 36-65, 66-95, 96-125, 126-215, 216-305
cw=[4(1) 4t) &) &0) 40 ™ v=[40) 4] z=[40) al) 40)]

* 4,(t) : Legendre polynomials

f (THI) = 0 if THI <60
| THI =60if THI >60



Covariance components

hy | [1®Q 0 0 0
pet 0 | ®P 0 0
var =
ut 0 0 H®G O
e | | O 0 0 R
| . identity matrix

* Q :2%2 matrix of (co)variances for HY effects
*H :a matrix combining additive relationship and genomic relationship

e P,G :4X4 of (co)variances for total (general + heat tolerance ) PE and AG
effects

* R :diagonal matrix with residual variance corresponding to DIM category



AG (co)variances and heritability

 General AG (co)variance at DIM t and t’:
coV (U(t), U(t)) = COV| Upahy (1) + Updh (1) +Unothy (1), Unodly () +Upadh (') +Upohy (1) |
- Zcov(umi¢i (1), Uy (1))

=>4 (t)g; (t")cov (U, uy)

i,j

* AG variance of heat tolerance: f (THI) o2

* AG covariance and correlation between general and heat tolerance at DIM t:

Cov(u(t), f (THI)-uh) = f(THl).cov[umo¢0 () + Ut () + U, (), uh ] Correlation: Z¢5 )cov(u,,,uh, )

= f(THI)- Z¢ cov(u,,;,uh,) \/z¢ COV (Ui, Ui ) Oy

. TotaI AG variances and heritability at DIM t and THI:
Z¢ *cov (U, Uy ) + f(THI)Zo-jh+2f(THI)Z¢i,(t)cov(umi,uhm)

2
o}

h 2 — Utotal

2 2 2
O-utotal + O-petotal + Ghy + O-e




AG / PE correlation
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* AG correlations were negative, except for SCS.
* PE correlations were negative and weaker than the AG correlations.
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Total AG variance
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* The higher the THI, the larger the total AG variances.
 Change in Fat looked different at later stage of lactation.



Total PE variance
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* The higher the THI, the larger the total PE variances.
* PE variances were bigger than AG variances.



Heritability
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summary

e PE variances of heat tolerance were larger than AG variances.
» Various non-AG factors affect.
* Negative genetic correlation (general effect vs heat tolerance) should be
considered carefully.
» Use total AG effect.
* AG variances were smaller, whereas PE variances were larger than national
genetic evaluation.
» Further study is required.

* Heat stress affects more in later parities.
» Later parities to be included.

* Variance components were successfully estimated. Genetic evaluation of heat
tolerance would be feasible.
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Background

» SKin: the outermost structure and the largest organ of the mammals’ body,
undertakes the many important functions

BCS

deposition of
body fat (Bruckmaier al., 1998;

» Skinfold thickness:

v widely used to represent skin thickness Nicholson al., 1988)
v measuring method friendly to animal SEOTOILS ENE Reproductive
milk yield _ spermatozoa
v’ suitable for measurement in large population (Hamid al., 2000; Skintold G
Kshatriya al., 2009) thickness (Siddiqui al., 2008)
» The neck and rib are the body regions _ _ _ :
Functional traits Disease detection

frequently used in previous studies heat tolerance tuberculosis

parasitic resistance (Bonsmaal., 1940;

v' different repeatability in different regions Maioranoal., 2016 )

v different measuring difficulty in different regions
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Background

»In previous studies, the factors affecting the skinfold thickness have been

explored (Dowling al., 1955; Patel al., 1958; Hayman al., 1966)
v" breed, body regions, nutrition status, gender, age and measurer

» Skinfold thickness is an important trait, however not been considered seriously
In dairy. Very little studies regarding genetic analysis of skinfold thickness

year author species Body region No. Obs h?
2016  Maiorano Nellore scapula 17940 0.12 £ 0.02
1991 Slee Merino Sheep right mid-side - 0.35%+0.19

» The objectives of this study were to estimate the heritability of skinfold
thickness and its genetic association with BCS and milk production traits in
Chinese Holstein



Material & method

O Holstein milking cows in 9 scaled farms in Beijing
O Measurement: skinfold thickness, BCS

v" skinfold thickness at the neck (STN)

v" skinfold thickness at the last rib (STR)
O Device: Digital Vernier caliper

O Collecting test-day records during measuring period

Year-month No. of farms

2015, July-Aug 6
Measuring skinfold Measuring skinfold Body condition
thickness at the neck thickness at the last rib score (BCS) 2016, Ju ne-Aug 14




Material & method

» Factor analysis (SAS, GLM)

YEEERY

China Agricultural University

STNijkl =u-+ FMl + PARITY] + STAGEk + blBCS + eijkl
STRyjxim = i + FM; + PARITY; + STAGE, + BODYSIDE, + b, BCS + €;jm

» Genetic analysis (DMU, animal model) B Traits

O bi-variate: STN, STR
O 6-traits: STN, STR, BCS, MY, FP and PP

STN = FM + PARITY + STAGE +A+E

STR = FM + PARITY + STAGE + BODYSIDE + A+ E

BCS = FR+ STAGE+ A+ E

MY= FY + PARITY + STAGE + A+ E
FP= FY + PARITY + STAGE + A+ E
PP= FY + PARITY + STAGE + A+ E

STN: skinfold thickness over the neck

STR: skinfold thickness over the last rib

BCS': body condition score MY: milk yield

FP: milk fat percentage PP : milk protein percentage

O Effects

FM: farm-measurer of skinfold

FR: farm-rater of BCS

FY: farm-year of test-day records

PARITY: parity of the cow

STAGE: milking stage of the cow
BODYSIDE: body side of the measured cow
bi/b,: regression coefficient for BCS

A: random additive genetic effect

E: random residual effect



Results & discussion

» Descriptive statistics

tEEERY

China Agricultural University

Traits No.Obs MAX MIN MEAN SD CV :
STN/mm 4428 1.00 1328 (7.16 1.30) 18.1% ¢ [Ihe STNwasthinner
STR/mm 4452 1.07 22.77 (11.76 1.97 16.7% than STR

BCS 5810 1.00 5.00 2.90 0.79 27.4% ° There iS a Significant
MY/kg 5646 0.80 90.00 3458 1020 29.5% -

FP/% 4980 068 7.99 397 088 22.2% bo_dy S'.de effect on

PP/% 5544 153 933 301 030 10.1% skin thickness at the

last rib!
» Factor analysis
Traits R2 FM/FS/IFY Stage Parity BCS Body side
raits df F-value df F-value df F-value df F-value df F-value

STN 0.39 13 205.41** £ 6.23** 4 19.49** 1 60.76%*

STR 0.37 12 109.56** 5

3.18**

4 27.718**

1

71.53** 1 149.69**
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Results & discussion

»Results from bi-variate model v' Estimated heritabilities fo,
. Additive Error Phenotype Heritability STN was higher than STR:
Traits No. Obs VC VC VC +oE

STN 4307 013 090 103 ( 0.1310.03] low to mOodETels
STR 4331 063 197 260 [0.244+0.04] « Estimated heritability of

»Results from 6-traits model STN & STR are similar

Additive Error Phenotype Heritability between bi-variate model
vC  VC VC +SE and 6 traits model

y =

STN 4307 013 090  1.03 [013£003] . e
v
STR 4331 064 196 261 [o.zsio.osJ The estimated heritability

BCS 5585 005 0.34 039  0.12%+0.03 was similar with the previous

MY 5634 834 6873 7707 0.11+0.02 ctudv o IR |
FP 4969 005 066 071  0.07%0.02 udy VUEIRED &l

PP 5533 0.01 0.07 0.08 0.08%0.02 2016)

Traits No. Obs
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Results & discussion

»Results from 6-traits model
Genetic (below the diagonal) and phenotypic (above the diagonal) correlations

Traits STN STR BCS MY FP PP
STN 0.33 0.13 -0.01 0.00 -0.01
ST 80X0.08 0.15 -0.05 -0.02 -0.02
BQS 0.34%x0.15 0.19%0.14 -0.21 0.03 0.09
MY 13+0.16 - +0. -0.35*0.14 -0.08 -0.16
FP 0.13*0.20 0.04x0.18 0.17*x0.19 -0.69%0.15 0.28

PP 0.05X0.19 0.04*0.17 0.30*0.12 -0.58*0.15 0.66%0.17

v" a high genetic correlation existed between

v a moderate and positive genetic correlation

v Low genetic correlations existed bet
performance. r, of STN and milk production
STR and milk production traits
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Results & discussion

>BLUE Of fixed effECtS BLUE: best linear unbiased estimated
0.67 O
- BLUE-STN
- BLUE-STR 0.44 -~ BLUE-STN
0.47 —~ BLUE-STR
= _ STR
o 0.21 = Body side
= = N BLUEXSE
)
I Left 860 -0.83+0.11
0.2 Right 3074 0.00%0.00
parity
-0.4- stage

v Roughly, skinfold thic
then rise with the incre
v" Skinfold thickness is se
COWS
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Results & discussion

» genetic trend of EBV of skinfold thickness (bulls with Rel. >0.1)

STN STR
1 2.5
08 'y =0.0053x - 10.508 , 'y =0.0121x - 24.072
0.6 15
0.4
1
>0.2 >
m 0.5
w o L

0 22000 2002 2004 2006 2008 2010

o

2000 2002 2004 2006 2008 2010

04 -0.5

-0.6 -1

0.8 Birth Year 15 Birth Year
reliability>0.1, N=309 reliability>0.1, N=329

From 2000 to 2011
Change of EBV=0.06 mm=0.17c, Change of EBV=0.14 mm=0.18c,
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Conclusions

» Skinfold thickness is a trait with a low to moderate heritability, and there is a
high genetic correlation between skinfold thicknesses on different body
regions in Holstein population

» Skinfold thickness is easy measurable trait and sensitive to change of parity
and milking stage in lactating cows

» Skinfold thickness can be considered as an additional information of BCS to
evaluate fat deposition

» Selection on skinfold thickness to improve milking cow’s ability to fight with
the negative energy balance is feasible as only weak genetic correlations
existed between skinfold thickness and milk performance
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Discussions

» Genetic correlations with other traits

Rectal Rectal Healthy Healthy Healthy Healthy
temperature temperature longevity traits traits traits  traits
(AM) (PM) (reproduction) (digestion) (udder) (hoofs)
STN -0.14 -0.02 0.13 -0.14 0.01 0.03 0.06
STR -0.11 -0.09 0.20 -0.11 0.00 -0.01 -0.02

g VQRL;) X (X RL;) -
L Y (RL; X RL;) ‘

J

n =2 (Hickman et al., 1969; Calo et al., 1973)



Is a 35-day feeding test with
automatic daily weighting good
enough for evaluating beef cattle

for feed efficiency traits?

R.A.A. Torres Junior, L.O.C. Silva, R. Favero, R.C.
Gomes, A. Gondo, S. Tsuruta, M.V. Costa, V. Okamura,
G.R.O. Menezes, P.R.C. Nobre, L.M Nieto
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Standard Error of Computed Gain

* (Final weight — Initial weight )/number days on feed for 70 days
SE of gain = (2)%>* 7.8/ 70 = 0.157 kg.day! (0.098 kg.day")

* Regression on weekly weights (56 days)
7.8
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SE of gain = = 0.158 kg.day"

\/2444

* Regression on multiple daily weights (197 weights in 56 days)
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SE of gain = = 0.036 kg.day"

* Regression on multiple daily weights (94 weights in 35 days)
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* Regression on daily weights (in 35 days)
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Material and Methods

601 Nelore Bulls from 6 test batches in 2016 and 2017

Final Weight, Average Metabolic Weight, Average Daily Gain,
Average Daily Feed Intake, Residual Feed Intake and Feed
Efficiency Ratio

Total 56 days of test and First 35 days of test.
Contemporary group included Test Batch and Herd of Origin
Total Pedigree of 12,785 animals

Simple animal Model with contemporary group effect and linear
effect of age within contemporary group

Software Gibbs2f90 and Postgibbsfo0



Results and Discussion

Table 1. Correlation and their standard-errors between 35-day and 56-day test results for the
studied traits.

Trait! Phenotypic Correlation Genetic Correlation
FW (kg) 0.974 0.976 £ 0.007
AMW (kg) 0.992 0.993 £ 0.002
ADG (kg d?) 0.864 0.904 £ 0.031
ADFI (kg d?) 0.940 0.952 £ 0.021
RFI (kg d?) 0.875 0.937 £ 0.022
FER (g kg?) 0.800 0.879 £0.034

LFW, final weight; AMW, average metabolic weight; ADG, average daily gain; ADFI, average daily feed intake
in dry matter basis; RFI, residual feed intake; FER, feed efficiency ratio.



Results and Discussion

Table 2. Heritability estimates and their standard-error for 35-day and 56-day test results of
the studied traits.

Trait! 35-day trait 56-day trait
FW (kg) 0.541 + 0.089 0.538 + 0.091
AMW (kg) 0.561 + 0.088 0.557 + 0.090
ADG (kg d?) 0.583 + 0.080 0.630 £ 0.075
ADFI (kg d%) 0.508 + 0.090 0.533 + 0.094
RFI (kg d) 0.533 + 0.088 0.539 + 0.095
FER (g kg) 0.603 % 0.075 0.616 + 0.079

LFW, final weight; AMW, average metabolic weight; ADG, average daily gain; ADFI, average daily feed intake
in dry matter basis; RFI, residual feed intake; FER, feed efficiency ratio.



Conclusion

Yes, we can reduce the test to 35 days, as the precision of
gain will be high enough to enable small decrease on genetic
gain for the feed efficiency measures (around 15%) and even
smaller changes on rankings of proven bulls.
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A novel, comprehensive genetic
and management initiative to

reduce the environmental impact of
New Zealand dairy cattle.

DairyNz®

New Zealand Animal Evaluation Limited

2018 Interbull Meeting, Auckland New Zealand
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Ministry of Business Innovation &
Employment wants impact

This programme will deliver transformational options
for dairy and beef farmers to meet environmental
targets by:

1. Developing genetically low nitrogen excreting animals

2. Implementing genetic and management strategies to
reduce nitrogen leaching

3. Ultimately, this research partnership will reduce sector-
wide nitrate leaching by 20%

Dairynz?®
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Intense publlc pressure

Subscribe = Loginorsign up

Manage subscription

Cows and seep
Dairy farming is polluting New
Zealand’s water

| Government data suggests that 60% of rivers and lakes are unswimmable

. 2
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Central Government Response
Freshwater National Policy Statement (2014)

* Informs local governments about their responsibilities
under Resource Management Act

* Directs regional councils to set objectives for the state of
fresh water bodies and set limits to meet them

 Emphasizes catchment-level targets rather than specific
on-farm practices

* Full implementation by 31 December 2025

Dairynz?®




Regionally variable nitrogen limits

« Auckland: N input limits:150kg N/ha/yr on sandy
solls, 200kg N/ha/yr other solils

 Bay of Plenty: Limits on N and P that can leave a
farm property based on a 3 year "“benchmark” period
(mid-2001 to mid-2004).

 Horizons: N limits based on farm’s land use
capability (LUC) classification

Dairynz?®




Variation within
regions: Canterbury

Nitrogen Baseline 2009-2013 averaged
N Loss.

Red - from 2017 need consent and
must be at baseline (if over 20kg
N/ha/yr).

Orange - Baseline + 5kg N - consent
required 2016 (if over 20kg N/hal/yr).

“Nutrient Allocation Zones

Blue and Green — Consent required if e il
iIncrease greater than 5kg N/ha/yr. e
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Enforcement largely model based
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Cow urine important for nltrogen
leaching

Urine patches can
havel200 kg N per
hectare, and plants

E 100
) . £ N, =0 0001 43, 1002260,
can't process it all. § o weose
E
(Haynes and Williams, 1993) g
5
£
- 20 4
Di HJ, Cameron KC (2000) New E 20 i . . :
Zealand Journal of Agricultural = i} 200 400 00 800 1000

Research 43, 139-147. Fatertialy leachabie N kg Wha)
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Advantages of genetic solutions

« Cumulative and permanent

« Universally applicable (assuming low GXE)

* Infinitely scalable

* No changes to infrastructure or farming practices
* Low cost to farmers once implemented

« Can be “stacked” with management solutions (e.g.
alternative pasture plants)

Dairynz?®




Can milk urea nitrogen (MUN)
predict urinary nitrogen (UN)?

1. Ammoniain rumen — b
passive diffusion to milk
al., 1993).

2. MUN routinely measure| .

3. MUN and UN are pheng
response to d Ietary [N] ) Jonker JS, Kohn RA and Erdman RA 1998. Using milk urea

4 . M U N IS he rltab I e (BeatSI nitrogen to predict nitrogen excretion and utilization efficiency in

UN (g/d)
g8 BB 88 8

0 5 10 15

MUN (mg/dl)

T |

lactating dairy cows. Journal of Dairy Science 81(10), 2681-2692.
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Key technology: automated urlne
Sensors R
Developed by AgResearch

Continuously-recorded
Individual-level data for UN,
urine volume, and urination
frequency in feed stalls or
while grazing
M.Shepherd: P.Shorten: D.Costall:
K.A.Macdonald (2017) Agriculture,

Ecosystems & Environment
236: 285-294
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‘Knowing is not enough; we must apply.

R eS e ar C h A I m S Willing is not enough; we must do.’

- Johann Wolfgang von Goethe

1. Genetics, genomics, physiology, and omics to enable selective
breeding

— Quantitative genetic and genomic analyses in representative “Development
Herds”

— Physiological and -omic comparisons of phenotypically divergent animals
— Develop new animal evaluation models
2. Validation, demonstration, and adoption to achieve national water
guality outcomes
— Develop practical breeding strategies & economic values
— Validate mitigation strategies at the whole-farm and catchment levels
— Develop enhanced models for sensible regulation

Dairynz?®




/-year Programme

C

David Chapman-(DairyNZ)

" Peter Amer (AbacusBio)

" Develop practical breeding strategies; economic values,
* and selection indices for UN

1L

2x2 factorial feeding stall exr~ ..c.ws wi genetically high
trac : _ _ .
sim, and low nitrogen excreting cows fed high and low [N]
. diets

ty
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OUESTIONS?

Mark.Camara@dairynz.co.nz
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Methods for discovering and validating
relationships among genotyped animals

G.R. Wiggans,! P.M. VanRaden,? and L.R. Bacheller?

1 Council on Dairy Cattle Breeding, Bowie, Maryland, USA

2 Animal Genomics and Improvement Laboratory, Agricultural
Research Service, USDA, Beltsville, Maryland, USA

C&/ B USDA gnlted States f
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Validation of parents
e Over 2.2 million animals genotyped in U.S. system

e Portion of parents validated
* 97% of sires
* 39% of dams

* Each genotype compared with all others to discover identical
genotypes and parent-progeny relationships

 Animals with incorrect sire or dam excluded from evaluation

CICRB Uba

Wiggans, Interbull, Feb. 2018 (2)



Validation of grandsires
* |f parent not genotyped or not confirmed, grandsire is checked

* Grandsire declared unlikely if animal and grandsire have more
opposite homozygotes than threshold, which declines as
possible comparisons increase

* Possible grandsires are suggested if low percentage of conflicts
and birth date reasonable

* Animals with unlikely grandsires excluded from evaluation

CICRB Uba

Wiggans, Interbull, Feb. 2018 (3)



Detection of chromosomal abnormalities

* Where parent and progeny have more conflicting SNPs than

allowed for a true parent-progeny relationship, location of
conflicts is checked

* If conflicts are concentrated on a single chromosome, parent-
progeny relationship is accepted

* Large deletion — animal is homozygous in the region

* Uniparental disomy — heterozygous SNPs in the region
* 102 cases discovered so far

CICRB Uba

Wiggans, Interbull, Feb. 2018 (4)



Quality control

* Each SNP evaluated for
e Call rate
* Portion heterozygous
* Parent-progeny conflicts

* Parent-progeny conflicts assessed for all SNPs in common
between parent and progeny genotypes

* Trio test if both parents genotyped

* 30 chips supported
CLCB WA

COUNCIL ON DAIRY CATTLI E BREEDING

Wiggans, Interbull, Feb. 2018 (5)



Computational burden

 Computer time to compare each genotype with all others
steadily increases with number of genotype in database

* 1,000 SNPs that were on all chips used to exclude most
unrelated animals

* Further speed-up needed
 Compare fewer SNPs
* Exclude some genotypes from comparison
* Optimize comparison method

CICRB Uba

Wiggans, Interbull, Feb. 2018 (6)



100 SNPs

* Selected based on call rate, MAF, and Mendelian consistency
* Measure: Conflicts/(number of both SNPs homozygous)

* Threshold of 8.4% eliminated 99.7% of genotypes without
eliminating any confirmed parent-progeny pairs

* Test with only 50 SNPs eliminated only half the unrelated
animal genotypes

CICRB Uba

Wiggans, Interbull, Feb. 2018 (7)



Compare genotypes for fewer animals

* For animals with both parents confirmed, check only recent

genotypes (starting with births 500 days before) for identical
genotypes

* For animals with 1 parent confirmed, skip genotypes with a
different confirmed parent when checking for identical
genotypes

* For grandsires, skip comparisons with bulls that have no
progeny

CICRB Uba

Wiggans, Interbull, Feb. 2018 (8)



MGS checking with haplotypes

* For animals included in the evaluation, haplotypes are
generated during imputation

* These haplotypes can be used to validate or discover MGS
more accurately (even MGGS can be discovered)

* For MGS, identify bulls with around 45% of haplotypes in
common and at least 15% better than next best bull

* Discovered MGS assigned as dam’s sire if unknown

CICRB Uba

Wiggans, Interbull, Feb. 2018 (9)



Use haplotypes for initial MGS discovery

* Remove searching for possible MGS from initial genotype
validation program for faster processing

* Include new animals with unknown or unlikely MGS in weekly
evaluation calculations (confirmed sire required)

* For genotypes not qualifying for evaluation, blank conflicting
pedigree and suppress release of evaluation

e Continue use of current SNP comparison process for PGS

CICRB Uba

Wiggans, Interbull, Feb. 2018 (10)



Timing comparison

* Time to load 1 submission of 1,967 genotypes
e Current — 51 minutes
* Eliminate 497 MGS searches — 39 minutes

* Time to run weekly MGS discovery for Holsteins — 9 minutes

* Time to run monthly MGS/MGGS discovery for Holsteins —
7 hours

) R USDA
CICB =22

COUNCIL ON DAIRY CATTLI E BREEDING

Wiggans, Interbull, Feb. 2018 (11)



Further possible use of discovered MGS

* When dam is unknown, constructed ID necessary to store
discovered MGS

mmm

68 213,704 21,963

* More complete pedigree gives better imputation

* Numerator relationship matrix (A) more similar to genomic
relationship matrix (G)

CICB UsDa
e el

Wiggans, Interbull, Feb. 2018 (12)



Conclusions

e Rapid increase in size of genotype database requires periodic
modification of procedures

* Checking all genotypes is desirable for correctly assigning
animal to genotype and improving pedigree accuracy

* 100 high quality SNPs are effective in excluding most
genotypes that are not parents or progeny

* Grandsires (even great-grandsires) can be checked and
candidates discovered

CICRB Uba

Wiggans, Interbull, Feb. 2018 (13)



Acknowledgments & disclaimers

* USDA-ARS project 8042-31000-002-00, “Improving dairy
animals by increasing accuracy of genomic prediction,
evaluating new traits, and redefining selection goals”
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and employer
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Questions?

CLCB

COUNCIL ON DAIRY CATTLE BREEDING

Wiggans, Interbull, Feb. 2018 (15)



Efficient computation of base generation allele
frequencies

11 February; Interbull meeting, Auckland, New Zealand

Michael Aldridge, Jeremie Vandenplas & Mario Calus
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Allele frequencies in genomic prediction

" Genomic prediction requires allele frequencies (AF)
" Commonly, AF are current data averages

" Theoretically, AF should be computed for the base generation

WAGENINGEN &(;@
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Base generation AF
Base generation = base generation in pedigree!

Base generation AF required for calculation of:
" Genomic relationships in (single-step) GBLUP
" Model-based reliabilities for multi-step genomic evaluations

" Computation of relationships among metafounders?

WAGENINGEN &@ 1l egarra, A., O. F. Christensen, Z. G. Vitezica, I. Aguilar,
soyears and I. Misztal. 2015. Genetics. 200:455-468.



Objective

Compare accuracy and efficiency
of different methods to compute

base generation allele frequencies

WAGENINGEN &(;@
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Methods — overview

" AF:p=-p

m Mean is estimated:

All Across all genotypes

Oldest Across oldest generation genotyped
BLUP In BLUP model

GLS General Least Squares (GLS)

WAGENINGEN %
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Methods - BLUP

" BLUP model; y = genotype (0,1,2)

" h2=0.99; allowing some genotyping error

" Univariate; or multivariate with zero genetic correlations

" Implemented using MiXBLUP

McPeek, M. S., X. D. Wu, and C. Ober. 2004. Biometrics. 60:359-367.
WAGENINGEN
NIVERSITY & RESEARCH o. Gengler, N, P. Mayeres, and M. Szydlowski. 2007. Animal. 1:21-28.



Methods — GLS (dense / sparse)

" GLS: 4; = (1'Az21)"11'A317,
" Dense: Compute and invert A,, Calc_grm

1
" Sparse: Az;il = (A22 — AZ1(Al1) Alz) 1 Own program / Intel MKL-PARDISO

McPeek, M. S., X. D. Wu, and C. Ober. 2004. Biometrics. 60:359-367.
WAGENINGEN Garcia-Baccino, C.A., Legarra, A., Christensen, O.F., Misztal, |., Pocrnic, |., Vitezica,
Frihank Z.G., and Cantet, R.J. 2017. Genet. Sel. Evol. 49, 34.



Data (simulation)

" Holstein-like population

" Generations 9 to 12 (after base) fully genotyped
" 325,266 animals in pedigree; 100,078 genotyped
" 1670 SNPs (providing replication)

" Selection: None or Strong

WAGENINGEN &(;@
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Change in AF across generations (with selection)

1.00

o
-N
Sl

0.50-

0.25

Generation 9 (oldest genotyped)

0.00 0.25 0.50 0.75 1.00
WAGENINGEN % Generation 1 (base)

UNIVERSITY & RESEARCH



Results - accuracy

m Without selection With selection

All

Oldest
BLUP

GLS _dense
GLS_sparse

WAGENINGEN

EEEEEEEEEEEEEEEEEEE

oooooooo

0.99 £ 0.01
0.99 £ 0.01
0.99 = 0.01
0.99 £ 0.01
0.99 £ 0.01

0.87 £ 0.01
0.88 £ 0.01
0.96 = 0.01
0.97 £ 0.01
0.97 £ 0.01
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Results - efficiency

_____ Method | Processtime | _RAM _

All 0-00:03:44 7.8 GB
Oldest 0-00:01:19 1.6 GB
BLUP (60 SNPs) 0-13:42:17  49.0 GB
GLS_ dense 50-20:12:16 165.9 GB
GLS_sparse 0-00:01:28 2.6 GB

=> Efficiency of GLS_sparse is very competitive!

WAGENINGEN &
EEEEEEEEEEEEEEEEEEE
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Discussion

" Few GLS_sparse estimates outside 0-1 range:
e Only for very low MAF <0.001

® Swapping allele code solved most of those

" Estimates were not affected when having:
® 2% genotyping errors
® 25% of sires unknown

WAGENINGEN %
EEEEEEEEEEEEEEEEEEE
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Conclusions

" Base generation AF required for:
® Genomic relationships in (single-step) GBLUP
® Model-based reliabilities for multi-step genomic evaluations

e Computation of relationships among metafounders

" GLS_sparse estimator recommended

e Accurate & very efficient

WAGENINGEN %
EEEEEEEEEEEEEEEEEEE

8 — x«
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Tuning indirect predictions

based on SNP effects from
ssGBLUP

Daniela Lourenco
A. Legarra, S. Tsuruta, D. Moser, S. Miller, I. Misztal

Interbull 2018



Why Indirect predictions?

* Interim evaluations
e Between official runs

* Not all genotyped animals are in the evaluations
* Animals with incomplete pedigree increase bias and lower R?

* Commercial products
* e.g. GeneMax for non-registered animals



Indirect predictions in ssGBLUP

[X,X )‘] S DGV = Za

WX W W+H‘1 wly. -
% m GEBV,oung = W1 PA + W,DGV — w;PP
a=ADZ'G | GEBV,,ung = DGV = Za

young

Lourenco et al., 2015



Problems with Indirect predictions

Genetic evaluation using single-step genomic best linear unbiased predictor
in American Angus!

D. A. L. Lourenco,*? 8. Tsuruta,* B. O, Fragomeni,* Y. Masuda,* L. Aguilar,’
A. Legarra,® J. K. Bertrand,* T. S. Amen,? L. Wang.® D. W. Moser.¥ and 1. Misztal*

© 2015 American Society of Animal Science. All rights reserved. ] Amim. Sci. 2015.93:2653-2662
doi:10.2527/jas2014-8836

COR(GEBYV, Za) > 0.99

Avg(GEBV) =100 =& Avg(Za) = 0



Objectives

1) Fine-tune indirect predictions to be compatible with GEBV

2) Investigate whether SNP effects are accurate when APY is used

* Possibly use subset of core animals



Dataset

« American Angus Association * Complete
* 8.2M animals in pedigree * Phenotypes up to 2012
* 6.2M birth weight (BW) * Genotypes up to 2014 (81k)
* 6.8M weaning weight (WW) * Reduced
* 3.4M post-weaning gain (PWG) * Phenotypes up to 2012
« 81k genotyped * Genotypes up to 2012 (66k)

* born 1977-2012: 66k

e born 2013-2014: 15k * 3-trait with mat and mpe
* Results for PWG



Accuracy of SNP effects from GK%Y or G

d. =\DZ'G la

s

— !/ —1 ~ .
aGZ%yH =ADZ GAPY-high_TeliabilityuAPY * Correlation between SNP effects

AN

g1 g =AD Z'Gapy randomBAPY * Correlation between Za

A1y = AD Z'G¢ pigh retiabitity WAPY

. B b1 N
ag-1g = AD Z°G ¢ ranaomUapy



Statistics for SNP effects

>0.99 >0.99

>0.99

G—l
° / Gapy _High
/ / GAPY Rand




Statistics for SNP effects

G-1 0.93 0.90

-1
GCC_High 0.90

-1 Ik
GCC_Rand s




Statistics for Za

-1 0.989 0.988

-1
Gee mign ' 0.987

-1
GCC_Rand




Fine-tuning indirect predictions from ssGBLUP

Understanding genetic and genomic bases
* Base of BLUP: founders of the pedigree
e Base of GBLUP: genotyped animals

* Base of SSGBLUP: Vitezica et al. (2011) modelled as a mean in genotyped animals

‘ P(ug) =Ny, G)

* u = (Pedigree base) — (Genomic base)



Fine-tuning indirect predictions from ssGBLUP

1) Formula in Legarra (2017) U= [+ 0.95Za + 0.05 Upgrents

2) Double fitting [ ]

a) fit a regression using genotyped animals in the evaluation

DGV,,4; = by + b, Z@

b) apply regression for indirectly predicted animals

i\lipz bO + b1Z€l

3) Add average GEBV U;p= GEBV,yq + Za
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Bias of indirect predictions

Za

GEBV - u,

Legarra_2017

Double_Fit

Average_GEBV
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Correlation(GEBV,u;,)

O
©
~ 00

Q

Correlation &

Regression Coefficient

0.99 0.99 0.99 0.99

0.98 0.98 I 0.98

Legarra_2017 Double Fit Average GEBV

Il 1 II Il

Legarra_2017 Double Fit Average GEBV

Regression of GEBV on Ui

mall M parents_genotyped mall M parents_genotyped
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Fine-tuning indirect predictions in ssGBLUP

o 1 1\
Pla) = e =k Y e a - ) ('zz:pu—p)) @=9

fila=u+Za

N

= GEBV + Za

Q)

uf



Final Remarks

* |Indirect predictions are unbiased after corrections

e Can be used as interim evaluation

* Indirect predictions based on core animals are slightly less accurate

* Reduction in computing time (no GB% and GE}])

* SNP effects from ssGBLUP may be useful for SNP MACE
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Validation of genomic reliability
and gains from phenotypic

updates

Paul VanRaden and Jeff O’Connell*

Animal Genomics and Improvement Laboratory
Agricultural Research Service, USDA, Beltsville, MD
*University of Maryland-Baltimore
paul.vanraden@ars.usda.gov

USDA

/_—_-

Interbull annual meeting, Auckland, New Zealand, 2018 (1) VanRaden


mailto:paul.vanraden@ars.usda.gov

e Methods to compute genomic reliability
— Summarized by Liu et al (2017)
— GREL compared by Sullivan and Jakobsen (2014)
e Simple validation of genomic reliability
— Do actual EBV changes agree with published REL?
— Examples from USA and Intergenomics
e Gains in reliability from more frequent updates

— Similar math can determine the value of re-estimating marker
effects more often

i /
Interbull annual meeting, Auckland, New Zealand, 2018 (2) VELLELED



REL calculation vs. validation

e REL estimation

— Adjust theoretical REL such as from SNP-BLUP-REL or from size of
reference population

— Use prediction error variance (PEV) because correlations are biased
downward by selection

e REL validation
— Similar to validating EBVs using truncated data
— Examine published REL for 6 traits and Net Merit
— Examine 3 breeds (HOL, JER, BSW) on USA scale

USDA
O LA

Interbull annual meeting, Auckland, New Zealand, 2018 (3) VELLELED



Genomic reliability theory

e Selection reduces variance such that Var(EBV) < REL * Var(BV), but not
prediction error variances (PEV):

e PEV = Var(EBV - BV) = (1 — REL) Var(BV)

e Variance of EBV differences are proportional to the difference in
reliabilities regardless of selection. If EBV, and EBV, are earlier and
later genomic evaluations with reliabilities REL, and REL,, then

e Var(EBV, — EBV,) = (REL, — REL,) Var(BV)
e If REL, is known, high, and accurate, then solve for
e REL, = REL, - Var(EBV, — EBV,) / Var(BV)

USDA
LN

Interbull annual meeting, Auckland, New Zealand, 2018 (4) VELLELED



Data to validate genomic reliability

e Published genomic evaluations from April 2014

e Published genomic evaluations from April 2017

e SD of difference in genomic PTAs

e REML estimates of true TA SD from Interbull MACE
e Example for Holstein protein validation bulls:

e Average published REL, was 0.76, REL, was 0.95, SD of change was 8.4,
and REML TA SD was 17.5. The observed REL, for protein was
calculated as

e Observed REL, =0.95 - (8.4)% / (17.5)2 = 0.72

USDA
O LA

Interbull annual meeting, Auckland, New Zealand, 2018 (5) VELLELED



Observed vs. published reliability, 2014

Milk

Fat
Protein
Longevity
SCS

Preg Rate
NetMerit

Average

73
72
71
47
64
63
68
65

Jerseys
68
68
68
55
62
52
64
62

+5
+4
+3
-8
+2
+11
+4
+3

72
74
72
65
77
69
68
71

Holsteins
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Observed vs. published reliability, BSW

Milk

Fat
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Longevity
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Preg Rate

Average
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Discussion of BSW results

e Same software used by USA and Intergenomics
e Same data except PA in USA vs. Pedigree Index in IG

— Bias from dam’s PTA and extra weight on PA

— Yield heritability reduced from 35% to 23% in Dec 2014
e Small test used only 41 bulls with > 50 US daughters

e Full test with all 475 IG bulls gave observed REL much more similar
because USA and IG both have only Pl for foreign MACE bulls
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Phenotypic update frequency

e Suppose reliability increases steadily from REL, to REL, across a year.

e The gain in reliability from n updates per year (REL, ) instead of 1
annual update should average:

e REL_=.5 (REL,-REL,) (n-1)/n

e Suppose bulls increase from 75% REL, to 91% REL, when 4 years old
(no daughters to many daughters).

e Minimum gain is 0% with an annual update because the bulls would
stay at 75% for the whole year.

e Maximum gain is 8% with instant updating. Bulls would average (75 +
91)/2 = 83% during that year.
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HOL NMS average reliability by age
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Phenotypic update frequency
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Reliability gains by update frequency

Frequency | Updates Young REL | Marginal Proven REL | Marginal
Gain Gain

Annual 1 73.0 75.0

6 months 2 73.5 0.5 79.0 4.0
4 months 3 73.7 0.2 80.3 1.3
3 months 4 73.8 0.1 81.0 0.7
2 months 6 73.83 0.03 81.6 0.6
Monthly 12 73.92 0.09 82.3 0.7
Weekly 52 73.98 0.06 82.8 0.5
Daily 365 73.99 0.01 82.97 0.17
Instant ©o 74.0 0.01 83.0 0.03

Assuming that REL begins at 75% and is 91% 1 year later for proven bulls
and begins at 73% and is 75% 1 year later for young bulls.
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Conclusions

e Exact calculation of genomic reliability is hard, but validation is easy

e Published USA REL averaged 2% too high for HOL, 3% too low for JER,
and 1% too low for BSW

e Published Intergenomics REL averaged 4% too low for BSW traits
because observed REL were higher

e Updating marker effects more frequently than 3 times per year could
improve average REL up to 2.5% for recently proven bulls but < 0.3%
for young animals
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Validation of genomic reliability
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e Methods to compute genomic reliability
— Summarized by Liu et al (2017)
— GREL compared by Sullivan and Jakobsen (2014)
e Simple validation of genomic reliability
— Do actual EBV changes agree with published REL?
— Examples from USA and Intergenomics
e Gains in reliability from more frequent updates

— Similar math can determine the value of re-estimating marker
effects more often
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REL calculation vs. validation

e REL estimation

— Adjust theoretical REL such as from SNP-BLUP-REL or from size of
reference population

— Use prediction error variance (PEV) because correlations are biased
downward by selection

e REL validation
— Similar to validating EBVs using truncated data
— Examine published REL for 6 traits and Net Merit
— Examine 3 breeds (HOL, JER, BSW) on USA scale
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Genomic reliability theory

e Selection reduces variance such that Var(EBV) < REL * Var(BV), but not
prediction error variances (PEV):

e PEV = Var(EBV - BV) = (1 — REL) Var(BV)

e Variance of EBV differences are proportional to the difference in
reliabilities regardless of selection. If EBV, and EBV, are earlier and
later genomic evaluations with reliabilities REL, and REL,, then

e Var(EBV, — EBV,) = (REL, — REL,) Var(BV)
e If REL, is known, high, and accurate, then solve for
e REL, = REL, - Var(EBV, — EBV,) / Var(BV)
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Data to validate genomic reliability

e Published genomic evaluations from April 2014

e Published genomic evaluations from April 2017

e SD of difference in genomic PTAs

e REML estimates of true TA SD from Interbull MACE
e Example for Holstein protein validation bulls:

e Average published REL, was 0.76, REL, was 0.95, SD of change was 8.4,
and REML TA SD was 17.5. The observed REL, for protein was
calculated as

e Observed REL, =0.95 - (8.4)% / (17.5)2 = 0.72
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Observed vs. published reliability, 2014
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Observed vs. published reliability, BSW
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Discussion of BSW results

e Same software used by USA and Intergenomics
e Same data except PA in USA vs. Pedigree Index in IG

— Bias from dam’s PTA and extra weight on PA

— Yield heritability reduced from 35% to 23% in Dec 2014
e Small test used only 41 bulls with > 50 US daughters

e Full test with all 475 IG bulls gave observed REL much more similar
because USA and IG both have only Pl for foreign MACE bulls
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Phenotypic update frequency

e Suppose reliability increases steadily from REL, to REL, across a year.

e The gain in reliability from n updates per year (REL, ) instead of 1
annual update should average:

e REL_=.5 (REL,-REL,) (n-1)/n

e Suppose bulls increase from 75% REL, to 91% REL, when 4 years old
(no daughters to many daughters).

e Minimum gain is 0% with an annual update because the bulls would
stay at 75% for the whole year.

e Maximum gain is 8% with instant updating. Bulls would average (75 +
91)/2 = 83% during that year.
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HOL NMS average reliability by age
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Phenotypic update frequency
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Reliability gains by update frequency

Frequency | Updates Young REL | Marginal Proven REL | Marginal
Gain Gain

Annual 1 73.0 75.0

6 months 2 73.5 0.5 79.0 4.0
4 months 3 73.7 0.2 80.3 1.3
3 months 4 73.8 0.1 81.0 0.7
2 months 6 73.83 0.03 81.6 0.6
Monthly 12 73.92 0.09 82.3 0.7
Weekly 52 73.98 0.06 82.8 0.5
Daily 365 73.99 0.01 82.97 0.17
Instant ©o 74.0 0.01 83.0 0.03

Assuming that REL begins at 75% and is 91% 1 year later for proven bulls
and begins at 73% and is 75% 1 year later for young bulls.
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Conclusions

e Exact calculation of genomic reliability is hard, but validation is easy

e Published USA REL averaged 2% too high for HOL, 3% too low for JER,
and 1% too low for BSW

e Published Intergenomics REL averaged 4% too low for BSW traits
because observed REL were higher

e Updating marker effects more frequently than 3 times per year could
improve average REL up to 2.5% for recently proven bulls but < 0.3%
for young animals
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Method Outline

. Build SNP marker MME and invert

. Compute reliability for the genotyped animals and adjust for
prediction R? : Relg

. Compute reliability from using information source (IS) method:
1. using only phenotypes of genotyped animals Relag
2. using only phenotypes of non-genotyped animals: Relug

3. using all phenotypes — when fitting a polygenic effect: Rela



Method Outline

4 . Compute reliability from genomics (Relg) over and above
pedigree and propagate through the entire pedigree (without
updating the genotyped animals): Relgg

5. Compute total reliability (Rel)
1. Genotyped animals: Combine Relg and Relyg
2. Non-genotyped animals: Combine Relgg and Rela

6. If fitting an polygenic effect in the model weight Rel:and Rela
by the proportions of total genetic variance assigned to the
marker and polygenic effect



Multiple breeds

®* New Zealand
®* Mixture of Holstein Friesian, Jersey and crossbred animals (HFxJ)

®* SNP allele frequencies differ between the Holstein Friesian and Jersey
breeds

* Potentially impact the SNP marker reliability calculations



Multiple breeds

® 7207 Sires with 3902 HF, 2356 J and 949 HFxJ
* 50k SNP panel (35k SNP)

A Matrix G Matrix
1 2000 4000 6000 7207 1 2000 4000
1 1 1
4 4
1 1 207 1 1

HE J X COF



Multiple breeds

®* Compute Z as m
(M; — 2p)/@ where & = /25p(1 — p) and p = » brd;p;

7=1
G Matrix Breed Adjusted G Matrix
1 20C0 4000 gCa0 7207 1 20C0 4000 0 0
1 1 1 1
4 400
1 4 - 1 4

HE 3 X O HWF 31 X



Examples

®* New Zealand national population 29m animals
® Dataset 1: 35K SNP on 140K animals
®* Dataset 2: 24K SNP on 70K animals (genotypes up to 2015)
® 2 Traits
* Liveweight h*=0.35, 1.9m records
* Fertility h?= 0.025, 16.4m records

® Prediction R? adjustment was set to 0.85



Multiple breeds

® Results of breed adjustments on SNP reliabllity for live weight
® Last three sire birth year cohorts with no daughters

® Similar results observed for fertility

35k SNP and 140K N

Young Sires A Matrix SNP SNP breed adjusted

Holstein Friesian
Jersey

HF x J




Multiple breeds

Reliablility distributions for Jersey

—

LA

" Adjusted |

. Unadjusted

0.55 0.6 0.65 0.7 0.75 0.8 0.85
Reliability



Computation Time

35K SNP 140K 24k SNP

Genotypes /0K Genotypes

Breed Adjustment 19m:12s

SNP Reliability 61m:39s 15m:40s

Reliability all
animals

Om:58s Om:55s

Total 81m:41s 22m:51s



Computation Time

24 Cores Simultaneously

35k SNP 24k SNP

®* SNP Reliability 140k N 70Kk N

® Inverse of SNP equations i10s 1meod
m:LUS M £Z4S

® Direct computation of the individual

animal reliabilities from the SNP 44m33s 10m:17s
(ZC22Z’)H

® [terative computation of the individual
animal reliabilities from the SNP 106mlss 29m:55s

/
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Results Liveweight

35K SNP 24k SNP
140K N /0K N

A Matrix
Proven Sires
Genomic

A Matrix

Young Sires

Genomic




Results Fertility

35K SNP 24k SNP
140K N /0K N

A Matrix
Proven Sires
Genomic

A Matrix

Young Sires

Genomic




Conclusions

®* Method is computational feasible for our national data set

®* For very large numbers of genotyped animals computing in individual
reliabilities (ZC22 Z');; from the marker model inversion may be problematic



Conclusions

® In multi-breed genomic analysis adjusting the SNPs for breed mean and
variance appears to be useful in avoiding reliability discrepancies caused by
breed SNP frequency differences



Conclusions

®* The method provides sensible reliabilities for the examples provided for this
talk

®* The method provides a way to incorporate genomic reliabilities for non-
genotyped animals
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2. using only phenotypes of non-genotyped animals: Relug

3. using all phenotypes — when fitting a polygenic effect: Rela
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4 . Compute reliability from genomics (Relg) over and above
pedigree and propagate through the entire pedigree (without
updating the genotyped animals): Relgg

5. Compute total reliability (Rel)
1. Genotyped animals: Combine Relg and Relyg
2. Non-genotyped animals: Combine Relgg and Rela

6. If fitting an polygenic effect in the model weight Rel:and Rela
by the proportions of total genetic variance assigned to the
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Multiple breeds
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Examples

®* New Zealand national population 29m animals
® Dataset 1: 35K SNP on 140K animals
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® 2 Traits
* Liveweight h*=0.35, 1.9m records
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Multiple breeds

® Results of breed adjustments on SNP reliabllity for live weight
® Last three sire birth year cohorts with no daughters

® Similar results observed for fertility

35k SNP and 140K N

Young Sires A Matrix SNP SNP breed adjusted

Holstein Friesian
Jersey

HF x J




Multiple breeds

Reliablility distributions for Jersey

—

LA

" Adjusted |

. Unadjusted

0.55 0.6 0.65 0.7 0.75 0.8 0.85
Reliability



Computation Time

35K SNP 140K 24k SNP

Genotypes /0K Genotypes

Breed Adjustment 19m:12s

SNP Reliability 61m:39s 15m:40s

Reliability all
animals

Om:58s Om:55s

Total 81m:41s 22m:51s



Computation Time

24 Cores Simultaneously

35k SNP 24k SNP

®* SNP Reliability 140k N 70Kk N

® Inverse of SNP equations i10s 1meod
m:LUS M £Z4S

® Direct computation of the individual

animal reliabilities from the SNP 44m33s 10m:17s
(ZC22Z’)H

® [terative computation of the individual
animal reliabilities from the SNP 106mlss 29m:55s

/
z,C**Z/



Results Liveweight

35K SNP 24k SNP
140K N /0K N

A Matrix
Proven Sires
Genomic

A Matrix

Young Sires

Genomic




Results Fertility

35K SNP 24k SNP
140K N /0K N

A Matrix
Proven Sires
Genomic

A Matrix

Young Sires

Genomic




Conclusions

®* Method is computational feasible for our national data set

®* For very large numbers of genotyped animals computing in individual
reliabilities (ZC22 Z');; from the marker model inversion may be problematic
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® In multi-breed genomic analysis adjusting the SNPs for breed mean and
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breed SNP frequency differences
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Integration of foreign estimates of SNP
effects into a domestic SNPBLUP

J. Vandenplas, M.P.L. Calus, G. Gorjanc




Introduction

" Genomic evaluation
® Aim: more accurate genomic EBVs

" SNP-based evaluations under study/testing
= Future: exchange of estimates of SNP effects?

=>How to integrate them into SNPBLUP?
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Aim

Developing and testing procedures to integrate
estimates of SNP effects and measures of precision
from a foreign SNPBLUP

iInto a domestic SNPBLUP
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Methods - joint SNPBLUP

Phenotypes + genotypes Phenotypes + genotypes

Domestic (D) pop. Foreign (F) pop.

\4

Joint SNPBLUP

D+F pop.
Ideally!
SNP est. + “accuracy”

D+F pop.
Training population
Selection candidates

Joint DGV

D+F pop.
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Methods - joint SNPBLUP
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y; = vector of phenotypes
B; = vector of fixed effects
vector of SNP effects
e; = vector of residuals

£
I

W; = matrix of SNP genotypes
X, , Z; = incidence matrices



Methods - joint SNPBLUP

Phenotypes + genotypes Phenotypes + genotypes
Domestic (D) pop. Foreign (F) pop.

\4

Joint SNPBLUP
D+F pop.

Issue: it implies sharing data!
=>How to replace it?

A

SNP est. + “accuracy”

D+F pop.
Training population
Selection candidates
Join; DGV
D+F pop.
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Methods - separate SNPBLUP

Phenotypes + genotypes Phenotypes + genotypes
Domestic (D) pop. Foreign (F) pop.

D ) . F .
PoP Own SNP variance ¢, PoP

SNP est.+ “accuracy”

F pop.

SNP est. + “accuracy”

D pop.

Training population

Selection candidates

v

Separate DGV
D pop.

Separate DGV
F pop.
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Methods — SNPBLUP with integration

Phenotypes + genotypes Phenotypes + genotypes
Domestic (D) pop. Foreign (F) pop.

SNPBLUP
F pop.

G ET Il SNP est. + “accuracy”
F pop.

SNPBLUP with
integration
D+F pop.

SNP est. + “accuracy”
D+F pop.

Training population

Selection candidates

¥

DGV with integration Separate DGV
D+F pop. F pop.
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Methods —-SNPBLUP with integration

® Assumptions
® Same model/variances (o7 & o) as joint SNPBLUP

® Same genotype (scaling) across all SNPBLUP
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Methods —-SNPBLUP with integration

XX, 0% X,Z, W, 0;°

-

-1
W,Z.,X, 0,2 WLZLZ, W, 0.2 +\(PEC(6L})) ~ 1o, }+ lo?

l X&yd Ue_z Wi ZM, Z, W, 0, ?

-1
W'Z'v. o=2 4 (PEC & ) & Least-squares part of the
ataYa Te (@) o foreign SNPBLUP
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|
WiZM, y, 0, °

RHS of the foreign
SNPBLUP
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= Several ways to approximate (PEC(&}))
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Methods - approximations of (PEC(&}))_l

1) No approximation (reference): (PEC((’)L}))_1
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Methods - approximations of (PEC((’X}))_l

1) No approximation (reference): (PEC((’)L}))_1

-1 -1

2) (PEC(&)) ~ (PEC()

Within_chromosome)
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Methods - approximations of (PEC(&}))_l

1) No approximation (reference): (PEC((’)L}))_1

— -1
2) (PEC(&;)) 1 ~ (PEC((/x})within_chromosome)

-1 -1

9 (PEC()) =~ (PEV())
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Methods — approximations of (PEC(&}))_l

1) No approximation (reference): (PEC(()L}))_1

— -1
2) (PEC((/X;)) 1 ~ (PEC(&})Within_chromosome)

(PEV(&}))_l

Q

3 (PEc(@))”

2

-1
9 (PEC(a7)) =~ (Ar(F(LDy,p))Aros? +10,7)
p . allele frequencies in the training set
LD, computed from foreign selection candidates
As : effective number of records per SNP
e Estimated from PEV(a;), LDf, and p
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Simulation

" 2 Holstein-like populations
e 1 trait (h2 = 0.30 - 60K SNPs)

" Training populations
e 5,000 animals / population
® Randomly sampled from gen. 1 to 6
® Domestic: own performance records
® Foreign: pseudo-records (~DYD, DRP) + weights

" Selection candidates
e 10,000 animals from gen. 7 / population



Results — correlations

1.2 T
Domestic

Foreign s

0 | | | |

Correlation (joint DGV,DGV with integration)

I
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Reference
® Accurate integration

® Even with onl;y PEV and LD information



Results — bias

1.2 T
Domestic

Foreign s

0 | | | |

Reg. coef. of joint DGV on DGV with integration

S
<<\C‘

Reference

Almost no bias, except for PEV



Conclusions

" Accurate integration of estimates of SNP effects
e Without exchanging genotypes/phenotypes

" Procedure similar to integration of foreign EBVs
= Similar assumptions/issues/solutions

" Easy extensions
e Multiple populations, multiple traits, ...
® Special case: SNP-MACE
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Thank you!
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