2022 Florida Ruminant Nutrition Symposium 33rd Annual Meeting

May 9 - 11, 2022 Best Western Gateway Grand Gainesville, Florida

PROCEEDINGS

33rd ANNUAL FLORIDA RUMINANT NUTRITION SYMPOSIUM

May 9 to 11, 2022 Best Western Gateway Grand Hotel Gainesville, Florida

Department of Animal Sciences University of Florida Institute of Food and Agricultural Sciences Gainesville, Florida 32611

Florida Ruminant Nutrition Symposium – May 9 to 11, 2022

Monday. May 9. 2022 – Mini-Symposium sponsored by Balchem Corporation "Exploring In Utero influences on Transgenerational Performance"

- 2:00 PM **Scott Sorrell**, Balchem Corporation. *Welcome and introductions*
- 2:05 PM Dr. Jack Britt, Jack H. Britt Consulting. ""
- 2:45 PM **Dr. Chad Dechow,** Penn State University. *"Epigenetics will change how we manage cattle"*
- 3:30 PM Refreshment Break
- 3:50 PM **Dr. Jimena Laporta**, University of Wisconsin. *"Phenotypic and Molecular Signatures of Fetal Hyperthermia"*
- 4:35 PM **Dr. Peter Hansen**, University of Florida. *"Methyl donors and epigenetic regulation of the early embryo"*
- 5:20 PM **Dr. Clay Zimmerman**. Balchem Corporation. Summary and wrap-up
- 5:45 PM Poolside barbeque

<u>Tuesday. May 10. 2022</u> – University of Florida Showcase "Update on Nutrition Research at the University of Florida"

- 8:10 AM **Dr. Philipe Moriel**, University of Florida. *"Improving beef progeny performance through developmental programing"*
- 8:50 AM **Dr. Fernanda Batistel**, University of Florida. *"Methyl donors and fetal and neonatal development"*
- 9:30 AM Refreshment Break
- 10:00 AM **Dr. Corwin Nelson**, University of Florida. *"Update on vitamin D nutrition for dairy cows"*
- 10:40 AM **Usman Arshad**, University of Florida. *"Choline: an essential nutrient for dairy cows"*
- 10:55 AM **Felipe Amaro**, University of Florida. *"Nitrogen efficiency as predictor of production performance in commercial dairy herds"*
- 11:10 AM **Mariana Nehme Marinho**, University of Florida. "Assessing feed efficiency and its association with health and reproduction"
- 11:30 AM Buffet Lunch

Tuesday, February 4, 2020 - Symposium

- 1:00 PM Dr. José E. P. Santos, University of Florida. Welcome
- 1:05 PM **Dr. John Arthington**, University of Florida. *Department of Animal Sciences update*
- 1:10 PM **Dr. Clint Krehbiel**, University of Nebraska. *"Nutrient partitioning during immunological challenge"*
- 1:50 PM **Dr. Barry Bradford**, Michigan State University. "*Mechanisms of hypophagia during disease*"
- 2:30 PM **Dr. Chanhee Lee**, The Ohio State University. *"Improving N efficiency through diet formulation"*
- 3:10 PM Refreshment Break
- 3:40 PM **Dr. Min Du**, Washington State University. *"Pre- and postnatal muscle and adipose tissue growth in beef cattle"*
- 4:20 PM **Dr. Sha Tao**, University of Georgia. *"Environmental effects on calf performance and responses to different feeding programs"*
- 5:00 PM Welcome reception

Wednesday, February 5, 2020 - Symposium

- 8:00 AM **Dr. Oscar Queiroz**, Chr. Hansen. *"Methods for silage conservation to improve quality"*
- 8:40 AM **Dr. João Vendramini**, University of Florida. *"Forage conservation for winter cow-calf systems"*
- 9:20 AM **Dr. Ben Saylor**, Arm & Hammer Animal and Food Production. *"Make your herd more resilient to hidden challenges"*
- 10:00 AM Refreshment Break
- 10:30 AM **Dr. Robin White**, Virginia Tech University. *"The role of animal production on the environment"*
- 11:10 AM **Dr. Sara Place**, Elanco Animal Health. *"Beef production and environmental sustainability"*
- 11:50 AM Ruminant Nutrition Symposium Adjourns

2022 Symposium Speakers

Guests

- Dr. Barry Bradford, Michigan State University
- Dr. Jack Britt, Jack H. Britt Consulting
- Dr. Chad Dechow, Penn State University
- Dr. Min Du, Washington State University
- Dr. Clint Krehbiel, University of Nebraska
- Dr. Jimena Laporta, University of Wisconsin
- Dr. Chanhee Lee, The Ohio State University
- Dr. Sara Place, Elanco Animal Health
- Dr. Oscar Queiroz, Chr. Hansen
- Dr. Ben Saylor, Arm & Hammer Animal and Food Production
- Dr. Sha Tao, University of Georgia
- Dr. Robin White, Virginia Tech
- Dr. Clay Zimmerman, Balchem Corporation

University of Florida

Department of Animal Sciences

Felipe Amaro Usman Arshad Dr. Fernanda Batistel Dr. Peter Hansen Dr. Philipe Moriel Mariana Nehme Marinho Dr. Corwin Nelson

Department of Agronomy

Dr. João Vendramini

2022 Florida Ruminant Nutrition Symposium

Speaker Biographies

Dr. Fernanda Batistel is an Assistant Professor in the Department of Animal Sciences at the University of Florida. Previously, she was an Assistant Professor in the Department of Animal, Dairy and Veterinary Sciences at the Utah State University. Dr. Batistel received the BSc in Animal Sciences from the Santa Catarina State University, Brazil, and the MSc in Animal Sciences from the University of São Paulo, Brazil. Dr. Batistel moved to the USA and completed her PhD at the University of Illinois. The focus of Dr. Batistel's research involves how nutrients affects production and metabolism in dairy cattle. Her current

research involves the effects of dietary fatty acids on fiber digestion and rumen fermentation and the impact of nutrients on fetal programming.

Dr. Barry Bradford is a Professor and the Clint Meadows Chair in Dairy Management in the Department of Animals Sciences at Michigan State University. He completed dual BSc degrees at Iowa State University and a doctorate in animal nutrition at Michigan State University. He served on the faculty at Kansas State University from 2006 to 2019, and in 2020 he returned to Michigan State University. Dr. Bradford's research focuses on dairy cattle nutrition and metabolism, with a particular emphasis on attempting to translate novel findings in fundamental metabolic physiology to practical applications in

animal agriculture. Contributions by his group have largely focused on dietary utilization of byproducts in lactation diets, the physiological impacts of systemic postpartum inflammation, and the roles of nutrients as signals.

Dr. Jack Britt is the owner of Jack H Britt Consulting. Dr. Britt received his PhD from North Carolina State University. He was a professor at Michigan State University, North Carolina State University, and at the University of Tennessee. He served as Interim Head and Associate Dean at North Carolina State University, and Vice President for Agriculture and Executive Vice President and COO at the University of Tennessee. Now, he provides professional consulting to companies involved in agriculture.

Dr. Chad Dechow is an Associate Professor in the Department of Animal Sciences at the Pennsylvania State University. Dr. Dechow received his BSc degree in Animal Sciences from Cornell University, the MSc in Animal Sciences from Penn State University, and the PhD degree in Animal Sciences from the University of Tennessee. The primary focus of his research is on improvements of dairy cow health and well-being through genetic selection programs. His research also focuses on use of records and adoption of technologies to sustain the economic wellbeing of dairy farms.

Dr. Min Du is a Professor and the Funded Chair in Growth Biology in the Department of Animal Sciences at the Washington State University. Dr. Du received his PhD from Iowa State University and completed a postdoctoral fellowship in the Faculty of Medicine at the University of Alberta, Canada. Dr. Du' research focuses on the development of skeletal muscle and adipose tissue. Specifically, his research seeks to explore the epigenetic mechanisms regulating the differentiation of mesenchymal stem cells into myocytes and adipocytes. A component of his research involves nutritional regulation of skeletal

muscle and adipose tissue development, epigenetic regulation of stem cell differentiation into myocytes and adipocytes, and fetal development and its long-term effect on offspring performance.

Dr. Peter J. Hansen is a Distinguished Professor and the L.E. "Red" Larson Professor in the Department of Animal Sciences at the University of Florida. Dr. Hansen is known for his research on thermoregulation of cattle, mechanisms of thermal stress induction of cellular damage on bovine embryos, and the identification and characterization of embryokines that regulate development of the preimplantation embryo. His most recent work studies genetic regulation of body temperature and mechanisms by which external cues during prenatal life affect pre- and postnatal phenotypes in dairy and

beef cattle.

Dr. Clint Krehbiel is a Professor and Head of the Department of Animal Sciences at the University of Nebraska. Dr. Krehbiel received his BSc and MSc degrees from Kansas State University. He earned his doctorate from the University of Nebraska Lincoln and was a postdoctoral fellow at the U.S. Meat Animal Research Center near Clay Center. Prior to his current appointment, Dr. Krehbiel a faculty member at New Mexico State University and Oklahoma State University. Dr. Krehbiel's research interest is on beef cattle nutrition with a focus on developing methods to improve animal health and efficiency of production.

Dr. Jimena Laporta is an Assistant Professor in lactation physiology in the Department of Animal and Dairy Sciences at the University of Wisconsin. Previously, Dr. Laporta was an Assistant Professor in the Department of Animal Sciences at the University of Florida. Dr. Laporta received her BSc in Biology and MSc in Animal Science in Uruguay, and the PhD degree in Dairy Science from the University of Wisconsin-Madison. Dr. Laporta's research investigates mechanisms involved in mammary gland development and physiology. An important component of her research is to study the underlying

molecular mechanisms by which prenatal and postnatal stressors contribute to the programming of offspring's future potential.

dietary N utilization

Dr. Chanhee Lee is an Assistant Professor of nutrient management in the Department of Animal Sciences, at The Ohio State University. Dr. Lee received his BSc degree from Konkuk University (South Korea), MSc degree from Seoul National University (South Korea), and PhD from the Pennsylvania State University, and completed a postdoctorate at the Lethbridge and Development Centre (Agriculture and Agri-Food Canada, Canada). Dr. Lee's research interests focus on improving production efficiency and reducing the environmental impact of dairy production by increasing efficiency of

Dr. Philipe Moriel is an Associate Professor in the Department of Animal Sciences at the University of Florida located at the Range Cattle Research and Education Center in Ona, FL. He received his BSc degree in Animal Science from São Paulo State University, Brazil, the MSc from the University of Wyoming, and the PhD in Animal Sciences from the University of Florida. From October 2013 to June 2016, Dr. Moriel was an Assistant Professor and Livestock Specialist with North Carolina State University. In 2016, Dr. Moriel moved to the University of Florida and his research program focuses on

nutrition of cows and heifers during gestation and calf nutrition during early stages of pre-weaning phase to modify offspring metabolism and induce long-term consequences to offspring health, growth, and immunity.

Dr. Corwin Nelson is an Associate Professor of Physiology in the Department of Animal Sciences at the University of Florida. Dr. Nelson grew up on a dairy farm in East Central Minnesota. After a year of the Farm and Industry Short Course at the University of Wisconsin-Madison, and a couple years of farming, he enrolled at the University of Minnesota-Duluth and earned his BSc in Biochemistry. He moved to Iowa State University where he received his PhD in Biochemistry and Immunobiology. Dr. Nelson completed a postdoctorate in the Department of Biochemistry at the University of Wisconsin-Madison.

In 2013, he joined the faculty in the Department of Animal Sciences at the University of Florida. His research focuses on dairy cattle nutrition and the role of nutrients, in particular vitamin D on the immune system in dairy cattle.

Dr. Sara Place is a Chief Sustainability Officer at Elanco Animal Health. Sara completed her BSc degree at Cornell University and the PhD at the University of California Davis. Before joining Elanco, Sara was an Assistant Professor of sustainable beef cattle systems at Oklahoma State University. Sara's area of specialization is sustainable management of livestock production systems focusing on opportunities to improve production efficiency, while reducing the environmental impact and promoting financial sustainability in animal agriculture.

Dr. Oscar Queiroz is the Global Product Manager at Chr. Hansen Animal Health. Dr. Queiroz received his BSc in Agronomy and MSc in Animal Sciences from the University of São Paulo, Brazil, and the PhD in Animal Sciences from the University of Florida. He completed a post-doctorate at the University of Florida and then moved to Argentina as a research coordinator and technical service specialist at Teknal S.A. In 2016, Dr. Queiroz joined Chr. Hansen as a silage specialist in South America and became the global product manager for dairy and beef cattle probiotics and the animal health branch of Chr.

Hansen. Dr. Queiroz expertise is on forage quality and conservation and the use of microbial additives to improve silage quality and cattle performance.

Dr. Ben Saylor is a Dairy Technical Services Manager for Arm & Hammer Animal and Food Production. Dr. Saylor received his BSc in Animal Sciences from the University of Arizona, the MSc in Animal Sciences from Kansas State University and the PhD degree in animal nutrition from the Department of Animal and Dairy Sciences at the University of Wisconsin, Madison. Dr. Saylor specializes on forage quality and conservation and on-farm microbial challenges and their control.

Dr. Sha Tao is an Associate Professor in the Department of Animal and Dairy Sciences at the University of Georgia. He obtained his BSc in Agriculture in 2004 and MSc in Animal Sciences in 2007 at the Henan University of Technology, China. Sha completed his PhD in 2012 at the University of Florida and a post-doctorate also at the University of Florida. Sha's work focuses on the effects of heat stress during the dry period on the mammary gland development, metabolic adaptations to lactation, and calf performance. A component of his research is the use of dietary manipulations during periods of heat

stress to evaluate their impact on growth and performance of dairy cattle.

Dr. João Vendramini is a Professor in the Department of Agronomy at the University of Florida. Dr. Vendramini received his BSc degree in agronomy from the University of São Paulo, the MSc degree in Animal Sciences from the same institution, and the PhD in forage management at the University of Florida. He was an Assistant Professor and Forage Specialist at Texas A&M University before joining the University of Florida Range Cattle Research and Education Center, Ona, FL. Dr Vendramini's program is dedicated to forage management with emphasis on sub-tropical production systems. The major area of

interest is forage-livestock interface and the impact of forage management on forage production and quality, and animal beef cattle performance.

Dr. Robin White is an Assistant Professor in the Department of Animal and Poultry Sciences at Virginia Tech University. Dr. White received both her BSc and PhD degrees in Animal Sciences from Washington State University and completed postdoctoral studies at Virginia Tech before joining the faculty in the Department of Animal and Poultry Sciences. Dr. White's research focuses on big data analytics with a focus on dairy cattle nutrition and nutritional impacts on digestive efficiency and environmental impact.

SPONSORS OF THE 2022 FLORIDA RUMINANT NUTRITION SYMPOSIUM

ADISSEO NORTH AMERICA

Heather Hunt heather.hunt@adisseo.com 4400 North Point Pkwy Alpharetta, GA 30022 (248) 466-4840

ALLTECH

Brent Lawrence blawrence@alltech.com PO Box 805 Dunnellon, FL 34430 (352) 212-6240

ARM & HAMMER ANIMAL & FOOD PRODUCTION

Mark Herrman Mark.Herrman@churchdwight.com 469 N. Harrison St. Princeton, NJ 08540 (608) 212-6553

BALCHEM ANIMAL NUTRITION & HEALTH

Eileen Frangione <u>efrangione@balchem.com</u> 7804 Brent Tree Drive Amarillo, TX 79121 (845) 664-4286

CHR HANSEN

Bonnie Bargstedt <u>USBoba@chr-hansen.com</u> 9015 W Maple St. Milwaukee, WI 53214 (607) 794-8433

ELANCO ANIMAL HEALTH

Darren McGee dmcgee@elanco.com 2500 Innovation Way Greenfield, IN 46140 (317) 433-5963

FEEDWORKS USA, LTD

Glenn T Smith Jr Glenn.smith@feedworksusa.com 6075 Miami Road Cincinnati, OH 45243 (502) 680-2291

HUVEPHARMA

Bret Meyers bret.meyers@huvepharma.us 525 Westpark Dr, Suite 230 Peachtree City, GA 30269 (863) 532-0103

MILK SPECIALTIES GLOBAL

Mark Scott <u>MScott@milkspecialties.com</u> 7500 Flying Cloud Drive Suite 500 Eden Prairie, MN 55344 (952) 942-7310

PERDUE AGRIBUSINESS

Detra Herrman <u>Detra.Herrman@perdue.com</u> 6906 Zion Church Road Salisbury, MD 21804 (717) 253-0390

PROGRESSIVE DAIRY SOLUTIONS

Bruno do Amaral bdoamaral@pdscows.com 120 Sierra Avenue Oakdale, CA 95361

(904) 239-2515

Don't Just Launch Her Lactation, Launch Your Herd For Life

New research¹ shows that feeding **ReaShure**^{*} *Precision Release Choline* during late gestation has a positive effect on both transition cows and their *in utero* calves. See the benefits in your herd.

- Reduced metabolic disorders for a smoother transition
- Higher peak milk, up to 4.6 pounds more milk/cow/day
- Improved colostrum quality
- Improved calf growth
- Increased calf immune status and survivability

A small investment in ReaShure today will impact profitability today, tomorrow and even years from now.

Visit BalchemANH.com/launch to learn more.

BALCHEM ANH-Americas Region

52 Sunrise Park Road New Hampton, NY 10958 Toll-free 845-326-5600 E-mail anh.marketing@balchem.com Website Balchem.com

All trademarks are property of Balchem Corporation © 2022 Balchem Corporation. All rights reserved. 2205-0002 ¹ Zenobi et al., 2018 J. Dairy Sci. 101 (Suppl. 2): 334, Zenobi et al., 2018 J. Dairy Sci. 101 (Suppl. 2): ii, Zenobi et al., 2018 ADSA, Late-Breaking Original Research, #LB5

Have you ever considered reevaluating your amino acid and fatty acid supplementation strategy?

Proprietary source of balanced amino acids

Amino acid solution for large herds

Premier blend of fatty

acids to boost milkfat

A source of fatty acids for fresh and high cows

Amino acid and fatty acid nutrition are complicated and recent research shows it is about to get even more complex! Our expert staff and Science based. Research driven.[®] solutions will help make your nutrition program easy, while staying profitable in the process.

Call us today at 1-800-525-1992

Science based. Research driven.®

Λ

Epigenetic considerations from a dairy breeding and management perspective

Chad Dechow Associate Professor of Dairy Genetics

Selz-Pralle Aftershock 3918 214 lbs / 24.9 gallons PTAM = -127 lbs

Same DNA sequence. Different package?

Chemical modifications to the genome alter gene expression

1

3

DNA methylation and gene expression

Mastitis & αS1 Casein

- Casein production reduced during mastitis
 - Particularly coliform
- 3 quarters infused with pathogen
 - E-coli
 - Staph aureus

et al., 2006: Journal of Molecular Endocrinology (2006) 37, 463-

• Methylation of αS1 Casein regulatory regions

6

5

Epigenetic programming

- Essential to proper embryonic and fetal development
- Directs cell response to environmental state
- Variation among cows evident
- Implications for genetic & breeding programs?

9

Implications for breeding programs

- Advanced breeding programs
- Crossbreeding
- Transgenerational selection

Current hurdles or unknowns

- Number of generations between reference population and genetic nucleus
- Effects of epigenetic (re)programming
 - Developmental abnormalities
 - Normal, but altered state from reference population

Epi-alleles contribute to hybrid vigor in Arabidopsis reduced after first generation Researchers able to targeting altered

Parental allele from one strain alters methylation pattern in alternate strain Hybrid vigor generally

stabilize hybrid vigor by pathways

Mutation altering epigenetic state

Genotype Maternal / paternal	Phenotype
+/+	Normal
+ / C	Hypertrophy
C / +	Normal
C/C	Normal
The second second second	

- Imprinted genomic region High level of DNA methylation
- Facilitated by DNA sequence mutation
- Reduced methylation Increased gene expression
- Genomic selection
- implications

Aphrodite Kallipygo The National Archaeological Museum of Naples, Italy

PNAS 108:6:2617-2622, PNAS 109:3570-3575 PNAS 112: E4959-E496

Transgenerational epigenetic inheritance?

• Intergenerational:

pregnant granddam – dam – offspring

- Observed in many species to varying degrees
- Environmental insult has effects on grand-progeny
- Transgenerational:

non-pregnant granddam – dam – offspring

great-granddam - granddam - dam - progeny

- Observed in plants and some experimental species
- Existence controversial in mammals

Genetics and breeding

- Learning to program cells will unlock advanced breeding program possibilities
- Describing epigenetic profiles may help unlock "non-additive" effects
 - Targeted breed and line crossing
- Select animals with favorable epigenetic states

Younger dams favored

17

Milk production percentile

Replacement management

- Generating replacements from heifers
- Programmed for success?
- Sexed semen for heifers, beef for mature cows
- Maternal yield and health have effects on daughter performance
 - Statistically significant, but small and inconsistent effects
- Accelerated heifer growth
 - Programming = faster growth & higher yield?
 - Or ... accelerated growth directly facilitate favorable programming?

25

Challenges to strategy development

- How well do observations from other countries translate to the US?
- Often *assuming* an epigenetic/fetal programming effect
 - Other possibilities: germline mutations, telomere dynamics, incomplete accounting for genetic effects, etc.
- Which tissue, and how do you access?

27

Other management considerations

- Strong evidence
 - Heat stress, diet, energy balance
- Some evidence
 - Beef on dairy, transportation stress
- Uncertain / unlikely
 - Sexing sperm, fetal sex

Phenotypic & molecular signatures of fetal hyperthermia

<section-header>

Thank you

Dimena Laporta

Methyl donors and epigenetic regulation of the early embryo

Take-home messages

- Changing DNA methylation during the earliest stages of life, when the embryo is developing from the one-cell stage to the blastocyst stage (day 7 in the cow), can change the program of development to affect postnatal phenotype
- Providing methyl donors is one way to change DNA methylation
- There is the opportunity to improve growth, reproduction or lactation by altering DNA methylation at critical times in development

Example of this idea

- Effects of choline treatment of embryos produced in vitro on birthweight and growth of the resultant calf
- 3

Take-home messages

- Changing DNA methylation during the earliest stages of life, when the embryo is developing from the one-cell stage to the blastocyst stage (day 7 in the cow), can change the program of development to affect postnatal phenotype
- Providing methyl donors is one way to change DNA methylation
- There is the opportunity to improve growth, reproduction or lactation by altering DNA methylation at critical times in development

Example of this idea

• Effects of choline treatment of embryos produced in vitro on birthweight and growth of the resultant calf

8722 – IVF Dried placenta weight – 9.1 g Cotyledon diameter – 3.5 cm Fetal weight – 152 g Liver weight – 6.6 g Heart weight – 1.4 g

7348 – IVF + CSF2 Dried placenta weight – 34.1 g Cotyledon diameter – 5.6 cm Fetal weight – 35.4 3 g Liver weight – 18.6 g Heart weight – 4.5 g

98 kg at birth picture at 2 days of age

Take-home messages

- Changing DNA methylation during the earliest stages of life, when the embryo is developing from the one-cell stage to the blastocyst stage (day 7 in the cow), can change the program of development to affect postnatal phenotype
- Providing methyl donors is one way to change DNA methylation
- There is the opportunity to improve growth, reproduction or lactation by altering DNA methylation at critical times in development

Example of this idea

• Effects of choline treatment of embryos produced in vitro on birthweight and growth of the resultant calf

- Changing DNA methylation during the earliest stages of life, when the embryo is developing from the one-cell stage to the blastocyst stage (day 7 in the cow), can change the program of development to affect postnatal phenotype
- Providing methyl donors is one way to change DNA methylation
- There is the opportunity to improve growth, reproduction or lactation by altering DNA methylation at critical times in development

Example of this idea

 Effects of choline treatment of embryos produced in vitro on birthweight and growth of the resultant calf

Postnatal phenotypic traits of calves derived from in vitro produced embryos exposed to choline chloride

Postnatal traits		Treatment combination					Statistical effects, p-value			
	Control-	Choline-	Control-	Choline-	Treatment	Sex	Interaction			
	Female	Female	Male	Male						
Number of calves at birth and weaning ^b	13/13	11/11	11/10	6/3	-	-	-			
Birth weight, kg	35.1±2.2	42.9±2.3	35.0±2.5	42.6±3.0	0.0081	0.9284	0.9603			
Adjusted birth weight, kg ^c	36.9±2.0	40.8±2.1	35.9±2.2	41.0±2.7	0.0857	0.8724	0.7667			
Weaning weight, kg	233.3±10.3	246.9±11.3	202.9±13.0	239.7±18.7	0.085	0.2256	0.3435			
205-d adjusted weaning weight, kg ^d	221.5±7.1	238.2±7.9	209.9±9.8	234.2±12.7	0.0477	0.2606	0.4176			
Hip height at weaning, cm	114.4±1.8	110.0±2.3	110.1±2.5	114.1±3.3	0.3458	0.3160	0.4136			
Weight:hip ratio at weaning, kg/cm	1.99±0.06	2.04±0.06	1.84±0.08	2.10±0.11	0.0378	0.1840	0.3314			
Average daily gain, birth to weaning,	0.93±0.04	0.81±0.05	0.84±0.05	0.93±0.08	0.1386	0.1687	0.4813			
kg/day ^d										

^a Unless otherwise stated, data are presented as least-squares means ± SEM.

^b Differences in number of calves at birth and weaning represent deaths in the first few weeks of life.

^c Adjusted for gestation length in the statistical model. Final model included treatment, mating, and gestation length. ^d Weaning weight adjusted for age at weaning using a standard equation for beef cattle.

31

Effects of choline treatment during culture on pregnancy outcomes after embryo transfer

Trait	Treat		
	Control	Choline	P-value, treatment
Recipients pregnant at d 28, % ^a	53.6±6.0 (30/56; 54%)	43.5±7.0 (20/46; 44%)	0.3136
Recipients that calved, % a	42.9±7.0 (24/56; 43%)	39.1±7.2 (18/46; 39%)	0.7044
Pregnancy loss, % ^a	20.0±7.3 (6/30; 20%)	10.0±6.7 (2/20; 10%)	0.3581
Gestation length, days ^b	290.0±1.0	294.2±1.1	0.0118

^a Data are least-squares means ± SEM and, in parentheses, the fraction and percent of cows.

^b Data are least-squares means ± SEM. One animal in the choline group with premature calving (277 days) was removed from the data set before analysis. There was no effect of sex or sex x treatment.

Chromosomal distribution of differentially methylated cytosines (DMC) in *L. dorsi* muscle

http://www.vetmed.wisc.edu/dms/fapm/fapmtools/8calf/calf_health_scoring_chart.pdf

: balchem

1

Current Practices of Raising Preweaned Da	iry Heifers are Good
Measurement	
Time to first feeding of colostrum	2.8 hours
Amount of colostrum fed in 24 hours	4.8 quarts
Calves with greater than 10 g/L serum IgG	87%
Milk fed	5.9 quarts/day
Average daily gain to weaning	1.61 lb/day
Mortality	5%
2,545 heifers; 104 Dairies; 13 states	
JDS 2018; 2014 National Animal Health Monitoring System	

Effect of Prepartum Feeding of *ReaShure* on Growth of Replacement Heifers (*in utero* effect only)

Age	No Choline	+ Choline	SEM		
	n = 17	n = 18			
Birth, lb	89	84*	2		
2 months (weaning), lb	169	171	4		
12 months, lb	710	738**	11		
Post-calving, lb	1177	1256**	35		
*Effect of choline, <i>P</i> < 0.10. **Effect of choline, <i>P</i> ≤ 0.05. bi et al., 2018. J. Dairy Sci. 101:1088.	Average daily No choli Cholir	Average daily gain from birth to yearling No choline: 1.77 lb per day Choline: 1.86 lb per day*			

: balchem

UF FLORIDA

15

Age	No Choline	+ Choline	SEM	
	n = 23	n = 23		
Birth, lb	92	89	3	
56 d of age, lb	161	162	4	
300 d of age, lb	604		12	

Replication of I	mproved ADG of Ho rom Dams Fed <i>ReaS</i>	lstein Calves Born <i>hur</i> e
Birth to ~50 w by <u>hei</u> t	eeks of age f <u>ers</u>	Birth to 5 weeks of age by <u>bulls</u> given LPS
2018	2022	2022
1.77 vs. 1.86 lb/d; <i>P</i> = 0.06 n = 35	1.70 vs. 1.80 lb/day <i>P</i> = 0.09 n = 46	0.96 vs. 1.23 lb/day <i>P</i> = 0.06 n = 38
		balchem

Choline – Modes of Action?

1. Meeting a choline requirement for organ development and maturation

Adequate Intake

425 mg/day

450 mg/day

iy 550

550 mg/day

???g/day

Requirements

: balchem

Composition of Surfactant from Lungs/Intestine Neutral lipids Cholesterol 2.4% 80 % des phospholipides lotaux Diacylglycerol 0.3% Phospholipids - Sphingomyelin 2.3% Intestine Lysobis-PA 1.3% DPPC 36.3% PE 3.0% Lungs PI 1.6% Unsaturated phosphatidylcholine 32.3% Figure 1 Composition of surfactant. Representative composition of bovine surfactant from lung Composition of suffactame, nepresentative composition of powine surgeourn jrom nen lawage fluid is shown. Components are expressed to a percentage of weight. DPPC: dipalmita/photophotidyl-holme; PA; phosphatidic acid; PE; phosphatidylethanolamin PG; phosphatidylg/zerol; PI; phosphatidylinositol, Reproduced from [s] with permission from the publisher.

39

Chakraborty et al., 2003

How Might Choline be Improving Growth and Immune Function in Dairy Replacements? Meeting a choline requirement for organ development and maturation. Improved expression of key genes responsible for growth, health, and immunity due to greater methylation of DNA *in utero*

PC = Phosphatidylcholin

38

Rubio et al., 1995

balchem

Becent Human Research Study from Cornell University Jrd Trimester Pregnant Women **480 mg choline/day (Adequate Intake) vs. 930 mg choline/day**Their offspring were assessed for cognitive ability utilizing an SAT (Sustained Attention Task) testing protocol **Results: Children 7 years of age showed improved sustained attention in 12 minute sessions if exposed to 930 mg/d** *in utero***The standard stan**

4

Impacts of maternal precalving nutrition (*No Supp.* vs. *Supp.*) on body condition score (BCS) and reproduction of cows and growth and immune response of their calves (studies¹ at the Range Cattle REC; Ona, FL)

	Stu	dy 1	Stud	dy 2	Stu	dy 3	Stu	dy 4	Stu	dy 5
	No Supp.	Supp.	No Supp.	Supp.	No Supp.	Supp.	No Supp.	Supp.	No Supp.	Supp.
Initial BCS	5.7	5.7	5.5	5.5	5.3	5.4	5.0	5.0	5.5	5.5
Calving BCS	5.8ª	6.1 ^b	5.0ª	5.4 ^b	5.2ª	5.8 ^b	4.7ª	5.6 ^b	5.0 ^a	5.5 ^b
Pregnancy, %	91.7	94.4	78.5	75.8	96.2	96.3	82 ^a	95 ^b	93.3	86.8
Calf weaning weight, lb	275 ^a	295 ^b	579 ^a	597 ^b	561ª	591 ^b	535ª	563 ^b	557 ^a	581 ^b
Response to vaccination, %	56.1ª	81.5 ^b	-	-	21ª	54 ^b	-	-	-	-
Means without a	rommon si	inerscrint	differed (P	< 0.05)						

¹ <u>Study 1</u> = 0 or 2.2 lb/day of molasses + urea for 57 days before calving (*Moriel et al.,* 2020), <u>doi:10.1093/las/skaa123</u> <u>Study 2</u> = 0 or 2.2 lb/day of molasses + urea for 47 days before calving (*Palmer et al.,* 2020), <u>doi:10.1016/i.livsci.2020.104176</u> <u>Study 3</u> = 0 or 2.2 lb/day of dried distillers grains for 90 days before calving (*Palmer et al.,* 2022), <u>doi:10.1033/las/skaa022</u> <u>Study 4</u> = 0 or 2.2 lb/day dried distillers grains for 70 days before calving (*lzquierdo et al.,* 2022). In review <u>Study 5</u> o or 2.2 lb/day dried distillers grains for 77 days before calving (*Vedovatto et al.,* 2022). In review

In all studies, cows and their calves were managed similarly from calving until calf weaning. Calves were early weaned at 2 to 3 months of age in Study 1 and normally weaned at 8 to 9 months of age in Studies 2, 3, 4, and 5.

Improving beef progeny performance through developmental programming

<image>

Philipe Moriel - Associate Professor Range Cattle Research & Education Center - University of Florida, Ona, FL

Study	Gestation trimester	Birth body weight	Preweaning growth	Post-weaning growth
Corah et al., 1975 (Exp. 1)	Third	+	+	Not reported
Corah et al., 1975 (Exp. 2)	Third	+	+	Not reported
Hough et al., 1990	Third	ND	ND	Not reported
Greenwood et al., 2005	Second + third	+	+	+
Banta et al., 2006	Third	ND	ND	ND
Stalker et al., 2006	Third	ND	+	ND
Stalker et al., 2007	Third	+	+	+
Martin et al., 2007	Third	ND	+	+
Larson et al., 2009	Third	+	+	+
Micke et al., 2010	First and/or second	+	Not reported	Not reported
Long et al., 2010	Early	ND	ND	-
Funston et al., 2010	Third	ND	+	ND
Underwood et al., 2010	Second	ND	+	+
Long et al., 2012	Early	ND	ND	ND
Mulliniks et al., 2012	Third	Not reported	ND	ND
Winterholler et al., 2012	Third	+	+	Not reported
Radunz et al., 2012	Second + third	+	+	ND
Bohnert et al., 2013	Third	+	+	ND
Shoup et al., 2015a	Third	ND	+	Not reported
Shoup et al., 2015b	Third	Not reported	Not reported	ND
Wilson et al., 2015	Third	ND	ND	ND
Summers et al. 2015a	Third	ND	Not reported	Not reported
Summers et al. 2015b	Third	Not reported	ND	+
Wilson et al., 2016a	Third	ND	ND	ND
Wilson et al., 2016b	Third	+	ND	ND
Kennedy et al., 2016	Third	+	Not reported	Not reported
Moriel et al., 2016	Third	ND	ND	ND
Marquez et al., 2017	Second or third	ND	ND	Not reported
Nepomuceno et al., 2017	Third	ND	ND	ND
McLean et al., 2018	First	ND	+	+/-
Maresca et al., 2018	Second + third	Not reported	Not reported	Not detected
Kennedy et al., 2019	Third	+	+	Not reported
Maresca et al., 2019	Second + third	+	ND	Not reported
Tanner et al., 2020	Second + third	ND	+	Not reported
Moriel et al., 2020	Third	ND	ND	+
Palmer et al., 2020	Third	ND	+	Not reported
Rodriques et al., 2021	Second + third	+	ND	Not reported
ND =	no statistical difference	14 of 33 studies	17 of 32 studies	8 of 22 studies

Steer innate and	humo	oral im	mune	resp	onse	
		Treatment			Р-	value
Item	CON	SUP42	SUP84	SEM	Trt	Trt × Da
Plasma cortisol, µg/dL	2.13	2.29	2.15	0.16	0.76	0.79
Plasma haptoglobin, mg/mL	0.25	0.30	0.28	0.02	0.40	0.78
Serum BVDV-1						
Titers, log ₂	3.46	4.41	3.91	0.38	0.21	0.87
Seroconversion, % total	78	85	88	7.2	0.64	0.27
Serum PI3						
Titers, log2	2.53ª	4.30 ^b	3.73 ^{ab}	0.44	0.07	0.51
Seroconversion, % total						
day 347	21 ª	63 ^b	54 ^b	11	0.32	0.01
day 389	80	82	83			

		Treatment	_			
Item	CON	SUP42	SUP84	SEM	P - value	
Hot Carcass Weight, kg	337	338	338	5.5	0.98	
Dressing Percent, %	59.7	60.5	59.8	0.30	0.12	
12th rib fat thickness, cm	1.77	1.69	1.62	0.089	0.49	
Longissimus muscle area, cm ²	79.2	80.8	80.7	1.58	0.74	
КРН, %	2.92	2.62	2.67	0.13	0.20	
Yield Grade	3.8	3.6	3.5	0.14	0.33	
Marbling	521 ^a	570 ^b	545 ^{ab}	15	0.07	
Average choice, %	5 ^a	36 ^b	17 ^{ab}	9.3	0.10	
Low choice, %	72	46	58	10	0.17	
Select, %	23	19	25	8	0.87	

UF FLORIDA

Inclusion of monensin into precalving supplementation

70 days before calving: 160 Brangus cows (16 bahiagrass pastures; 10 cows/pasture)

<u>Treatments :</u> NO SUP = No precalving supplementation SUP = 2 lb of DDG daily SUP + MON = 2 lb of DDG daily + 200 mg de monensin daily

Calving to weaning: All cows and calves managed similarly!

Early-gestation

UF FLORIDA

Brangus cows offered methionine-rich diets

30 days prepartum until end of the breeding season

Item		Control	Fishmeal	Methior	ine SI	EM P-value
Birth weight, kg		32.6	32.6	32.1	1	.2 0.96
Weaning weight ad for 205 days of age	ljusted , kg	201.3	213.8	213.5	5 8	8.4 0.54
Item	Control	Fishr	neal Me	thionine	SEM	P-value
ADG, kg/d	0.83ª	1.0)О ^ь	1.01 ^b	0.01	0.04
Final BW, kg	248.1ª	255	i.3 ^b	255.7 ^b	2.2	0.04
DMI, % of BW	2.27	2.2	28	2.25	0.02	0.60
G-E	0.16ª	0.1	9 ^b	0.19 ^b	0.01	0.02

Semitendinosus muscle of male calves at 30 days of age:

- Perturbed coexpression patterns in the offspring's muscle.
- Nearly 2% of all evaluated cytosines were differentially methylated between maternal diets.
- Unpreserved modules implicated in myogenesis, adipogenesis, fibrogenesis, canonical Wnt/βcatenin pathway, ribosome structure, mitochondrial activities, ATP synthesis and other functions.

Liu et al. (2020) BMC Genomics

UF FLORIDA

21

Calf Early-weaning

o **d 147...**

 \odot Start of the breeding season \odot Early-weaning

$_{\odot}\,d$ 154 until 201

Individual drylot pens

High concentrate-based TMR (3% of BW; DM)
 75% TDN and 22% CP (DM)
 2.2 lb/d of ground stargrass (*Cynodon nlemfuensis*) hay

$_{\odot}\,\text{d}$ 160 and 188

o Vaccination against bovine respiratory disease
 o Bovi Shield Gold 5 + One Shot

UF FLORIDA Late-gestation Brangus heifers (n = 36/yr; 4 astures/treatment; 2 yr) Moriel et al. (2021) J. Anim. Sci. doi:10.1093/ias/skaa123 Cow Plasma L-methionine, MAT1a, and SAM (Years 1 and 2) Methionine Adenosyltransferase 1A = MAT1a S-adenosyl methionine = SAM NOSUP MOL NOSUP MOL NOSUP MOL 1.800 300 . 3.9 3.7 m/gn 3.5 Plasma MAT1a 1.600 280 6 - 1,400 **≥** 260 بة 1,200 ₹. 240 1.000 220 200 ₹ 200 d 0 d 44 d 44 0 h d 0 d 44 Treatment x day Treatment x day Treatment x day P = 0.61P = 0.10P = 0.08 ab P < 0.05

UF FLORIDA

UF FLORIDA

Late-gestation

ELOPID/	
	ļ
	ļ

Brangus heifers (n = 36/yr; 4 astures/treatment; 2 yr) Moriel et al. (2021) J. Anim. Sci. doi:10.1093/ias/skaa123

	Treatments				Р	
Maternal performance	NOSUP	MOL	MOLMET	SEM	Trt.	Trt. x day
Cow BCS (1-9 scale)						ĺ
d 0	5.67	5.65	5.69	0.084	0.04	0.10
d 44 (near calving)	5.77 ^a	6.10 ^b	6.17 ^b			
d 147 (early weaning)	4.85	4.95	5.01			
BCS change						
d 0 to 44	0.09 a	0.42 b	0.49 ^b	0.081	0.002	
d 44 to 147	-0.93 b	-1.16 ^b	-1.17 b	0.099	0.10	
Pregnant cows d 288, %	83.3	90.0	90.9	10.1	0.82	
Calving date 2 nd calf, day of the study	453	452	445	7.4	0.68	
$^{ab}P \le 0.05$						

25

Late-gestation

Brangus heifers (n = 36/yr; 4 astures/treatment; 2 yr)

Moriel et al. (2021) J. Anim. Sci. doi:10.1093/jas/skaa123

Item			Р			
	NOSUP	MOL	MOLMET	SEM	Trt.	Trt. x day
Calf birth Body Weight ¹ , lb	55.5	61.6	58.2	2.2	0.13	
Body Weight ¹ , lb						
d 147 – Early weaning	174 ^a	185 ^b	189 ^b	7.0	0.54	0.10
d 154 – Drylot entry	178 a	194 ^b	196 ^b	7.0		
d 201 – Drylot exit	275 ^a	293 ^b	293 ^b	7.0		
ADG, lb/day						
Birth to weaning (d 147)	1.28	1.26	1.37	0.064	0.48	
Drylot (d 154 to 201)	1.85 ^a	2.00 b	2.18 ^b	0.068	0.02	
Birth to d 201	1.41 ^a	1.59 ^b	1.65 ^b	0.081	0.05	
Drylot (d 154 to 201)						
Total DM intake, lb/d	8.22	8.63	8.63	0.249	0.41	
G:F, d 154 to 201 ¹	0.246	0.243	0.236	0.006	0.51	
¹ Adjusted for calf sex ($P \le 0.05$) ^{ab} $P \le 0.05$						

26

Late-gestation

Brangus multiparous cows (70 days before calving) Palmer et al. (2020) Livestock Sci.<u>doi:10.1016/i.livsci.2020.104176</u>

- 160 multiparous Brangus cows (4 pastures/treatment; 10 cows/pasture)
- Stratified by:

• BW = 548 ± 54

• BCS = 5.45 ± 0.75

Immunological challenge in the feedlot

Effects of maternal supplementation of protein and energy during late gestation were detected for calf ADG immediately after a vaccination challenge against BRD pathogens but not during pre-vaccination period.

Treatments (starting 56 days precalving):

NOSUP = No Molasses + urea supplementation

MOL = 2.2 lb/d of Molasses + urea (DM)

MOLMET = 2.2 lb/d of **MOL + 18 g/d of methionine hydroxy analog** (Alimet, Novus)

		Treatment			
Item	No Supplement	Molasses	Molasses Methionine	SEM	P-value
ADG ¹ , lb/day					
Birth to early weaning	1.28	1.26	1.37	0.064	0.48
Postweaning drylot	1.85 ^a	2.00 b	2.18 ^b	0.068	0.02
Birth to day 201	1.41 ^a	1.59 ^b	1.65 ^b	0.081	0.10
¹ Adjusted for calf sex ($P \le 0.05$)					$^{ab}P \leq 0.05$
Voriel et al. (2020) J. Anim. Sci. doi:10.	1093/jas/skaa123				

33

UF FLORIDA

Longer evaluation periods

- Opposite outcomes to offspring performance during shorter vs. longer periods of evaluation.
- Low precipitation vs. high precipitation during gestation
 Decreased birth and weaning BW of calves
 - Increased longevity and percentage of females calving after 8 years of age (Beard et al., 2019)
- Multiple generations (F1 daughter and F2 granddaughters)
 - Laporta et al. (2020)
 - 10 years of consecutive data collection
 - Maternal heat stress during late gestation decreased milk production
 - Daughters during first, second and third lactations,
 - Granddaughters during their first lactation

41

Final messages

- Opportunity for beef producers to enhance offspring growth, immune function and reproduction
- Offspring outcomes can be variable
- Enhanced offspring growth more consistent during preweaning vs. post-weaning phase
- Current research challenges and opportunities:
 - Less data on *Bos indicus*
 - Pre- vs. postnatal calf nutrition, sex-specific outcomes, and multiple generations beyond F1 offspring.

Placenta Male Calves – DNA Methylation CTR MET CTR MET ----Treatment P = 0.55 Treatment P = 0.951.0 1.0 U0 0.8 Į, 0.8 DNAT3A, mRNA expre-DNMT3B, nRNA expr 90 0.6 0.4 relativ 0.2 relati 0.2 0.0 0.0 Methionine Control Methionine Control nethylation Unmeilhylated *****

Placenta Female Calves – DNA Methylation CTR MET ----Treatment P = 0.06Treatment P = 0.12 6.0 1.2 1 \$ sion 4.8 1.0 DNAFTI, mRNA expre nethyla 3.6 u 2.4 2.4 1.2 relative 0.2 0.0 0.0 Control Methionine Control Methionine

Take Home Message

- Maternal supply of Met during late pregnancy enhances the rate of calf development in utero and postnatal growth.
 - Mediated by placenta metabolism.

26

- Offspring sex-specific metabolic changes.
- The gestational phase of intervention affects lamb growth.

fernandabatistel@ufl.edu

	Vitamin	D Nutrition	al Recommen	dations	1 mg = 40,000 IU $1 \mu g = 40 IU$
Stage	IU/kg BW	µg/kg BW	IU/kg DM	µg/kg DM	IU/d
Lactating	40	1.0	900 to 1,400	17 to 25	28,000
Dry	30	0.75	1,600	40	22,500
Close-up	30	0.75	2,270	57	22,700
Fresh	40	1.0	1,750 to 2,000	44 to 52	28,000
Calves	32	0.8	3,200	80	3,200
Heifers (450- 650kg)	30	0.75	1,500	37.5	13,500 - 19,500
Beef	6.6	0.165	275	6.8	2,000 - 5,000
UF IFAS	Mature BW = 680 kg		NASEM, 2021, Nutrient Re	quirements of Dairy Ca.	ttle, 8th Edition

					Serum 25	5(OH)D, ng/mI		
Condition	Y/N	Ν	Mean	SE	25 th %	Median	75 th %	P-value
Hyperketonemia	Ν	257	89.2	1.0	69.7	88.5	106.8	0.01
	Y	22	102.0	4.7	75.4	100.2	124.6	
Lameness	Ν	260	91.1	1.1	71.2	90.0	108.6	< 0.01
	Y	19	78.4	2.7	65.2	77.1	90.0	
Mastitis	Ν	264	90.1	1.0	70.6	88.8	107.7	0.68
	Y	15	92.1	4.7	69.1	91.7	107.1	
Metritis	Ν	259	91.4	1.0	71.8	89.8	108.1	<0.01
	Y	20	75.3	4.3	49.9	66.4	92.3	
Ret. Placenta	Ν	261	90.9	1.0	71.1	89.3	108.4	<0.01
	Y	18	79.6	3.9	60.3	73.8	105.7	
Uterine Disease	Ν	187	91.3	1.1	71.2	89.6	108.1	<0.01
	Y	92	81.2	3.2	66.1	75	106.1	

Λ

Vitamin D and Postpartum Ca

- 1. Hypocalcemia results from failure of Ca homeostatic mechanisms, almost never vitamin D deficiency
- 2. Effect of increasing vitamin D from 20 to 50 KIU/d on transition Ca unknown
- 3. Increasing dietary vitamin $D_3 > 50$ KIU/d (1.5 mg/d) does not prevent hypocalcemia
- 4. Properly managed negative DCAD improves postpartum calcium

UF IFAS

13

Effect of Calcidiol on Transition Cows Summary of two University of Florida transition cow experiments Feeding 3 mg calcidiol compared with cholecalciferol: • Increased Ca digestibility • Increased Ca digestibility • Increased serum Ca and P • Increased milk yield by 4 kg/d in first 42 DIM • Increased colostrum yield and net energy yield

Treatment ¹	Cholecalciferol, μg/kg BW	Calcidiol, μg/kg BW	Total Vitamin D, μg/kg BW	Total Vitamin D IU/kg BW ²
CON	0.25	-	0.25	10
CHOL1.5	1.75	-	1.75	70
CHOL3	3.25	-	3.25	130
CAL1.5	0.25	1.5	1.75	-
CAL3	0.25	3.0	3.25	-

² NASEM 2021 recommendation = $0.8 \mu g/kg BW$ (32 IU/kg BW)

UF IFAS

Calf

14

Age, d

21

28

40

Serum 25(OH)D, ng/mL 1 72 05

Cow

< 0.001

< 0.001

0

0

Calf

< 0.001

0.167

Effect of calcidiol supplementation	on on growth and dry	matter intake of calv	ves	
	Treat	ment		
Measure	Control	Calcidiol	SE	P-value
No. calves	71	74	-	-
Cholecalciferol, µg/kg BW	2.3	2.3	-	-
Calcidiol, µg/kg BW	0	1.7	-	-
Serum 25(OH)D, ng/mL	42.5	70.1	2.2	< 0.001
Growth and DMI				
BW d 56, kg	81.0	83.3	1.6	0.07
BW gain, kg/d	0.811	0.874	0.035	0.02
Hip height d 56, cm	92.1	92.8	0.6	0.09
MR DMI, kg/d	1.14	1.20	0.05	0.09
Post-wean				
BW d 98, kg	111.5	115.0	1.4	0.02
BW gain, kg/d	766	787	31	0.44
Hip Height d 98, cm	100.5	101.6	0.4	0.01
Starter DMI, kg/d	2.33	2.28	0.07	0.62

		Treat	ment ¹			Parity	/			P=1	/alue ²	
	CH	IOL	C.	AL		1 4111					ande	
Item	1 mg	3 mg	1 mg	3 mg	SEM	Nulliparous	Parous	SEM	Source	Amt	Source × Amt	Parity
Prepartum ³												
Vitamin D3, ng/mL	3.7	8.6	1.2	1.2	0.2	4.1	3.3	0.2	< 0.001	< 0.001	< 0.001	< 0.01
25(OH)D ₃ , ng/mL*	58.3	63.5	93.8	173.6	3.34	99.01	95.56	2.61	< 0.001	<0.001	< 0.001	0.40
24,25(OH)2D3, ng/mL	2.1	2.2	2.7	5.7	0.3	3.5	3.0	0.2	< 0.001	< 0.001	< 0.001	0.17
Ratio 24,25D to 25D*	0.030	0.030	0.023	0.030	0.003	0.021	0.035	0.003	0.28	0.35	0.34	< 0.001
1,25(OH)2D, pg/mL	49.0	47.0	47.2	45.9	3.9	38.1	56.4	3.7	0.7	0.63	0.92	0.002
Postpartum ⁴												
Vitamin D ₃ , ng/mL	2.3	3.4	1.5	1.5	0.1	2.1	2.2	0.1	< 0.001	< 0.001	< 0.001	0.50
25(OH)D ₃ , ng/mL*	54.4	60.0	90.7	185	2.4	97.0	87.8	1.9	< 0.001	< 0.001	< 0.001	0.002
24,25(OH)2D3, ng/mL	2.1	2.4	3.8	9.4	0.3	5.0	3.8	0.3	<.0001	< 0.001	< 0.001	0.008
Ratio 24,25D to 25D*	0.033	0.037	0.037	0.058	0.004	0.033	0.05	0.003	0.01	< 0.001	0.02	< 0.001
1,25-(OH)2D, pg/mL	82.1	87.8	78.3	81.3	4.8	59.2	105.5	5.5	0.12	0.19	0.69	<0.001

Table 4. Effect of s	ource and	amount	of vitam	in D on :	serum n	ineral concen	trations.					
	CU	Treat	iment ¹			Parity	<i>i</i>			P-	value ²	
tem	1 mg	3 mg	1 mg	3 mg	SEM	Nulliparous	Parous	SEM	Source	Am <u>t</u>	Source × Amt	Parity
Prepartum ³												
Ca, mM	2.33	2.31	2.34	2.34	0.02	2.34	2.32	0.02	0.27	0.56	0.59	0.48
Mg, mM	0.84	0.85	0.83	0.82	0.02	0.83	0.81	0.01	0.25	0.74	0.73	0.01
P, mM	1.89	1.86	1.97	2.05	0.03	2.01	1.88	0.03	< 0.001	0.49	0.08	<0.001
ostpartum ⁴												
Ca, mM	2.13ab	2.11 ^b	2.15 ^{ab}	2.17 ^a	0.02	2.17	2.12	0.01	0.03	0.98	0.34	0.02
Mg, mM	0.88	0.86	0.87	0.85	0.02	0.88	0.85	0.01	0.53	0.07	0.93	0.26
P, mM	1.72	1.68	1.75	1.80	0.04	1.79	1.69	0.24	0.03	0.84	0.20	0.004
4 fever, % ⁵	5.1	2.2	2.3	4.4	-	0.0	4.6	-	0.94	0.90	0.40	-
SCH, %6	71.1	80.0	72.1	60.8	-	44.2	79.2	-	0.05	0.98	0.12	<0.001

		Treat	iment ¹			Parit	у			P-	value ²	
	CH	OL	C	AL								
Item	1 mg	3 mg	1 mg	3 mg	SEM	Nulliparous	Parous	SEM	Source	Amt	Source × Amt	Parity
Ca intake, g/d	43.4	45.4	47.6	44.9	2.5	53.33	37.26	1.88	0.44	0.88	0.34	< 0.001
Ca fecal excretion, g/d	30.9	31.8	31.5	28.3	1.7	29.0	32.3	1.1	0.39	0.50	0.23	0.05
Ca absorption, g/d	14.1	13.1	16.0	16.6	2.0	8.7	21.2	1.8	0.12	0.92	0.65	< 0.001
Ca digestibility, %	26.8	26.5	31.6	35.3	2.8	22.0	38.1	2.2	0.01	0.51	0.46	<0.001
Urine pH	5.77	5.87	5.75	5.72	0.08	6.03	5.53	0.09	0.23	0.65	0.34	< 0.001
Urine Ca, mg/L	307	319	330	370	17	318	345	13	0.03	0.11	0.38	0.15
Urine Ca, g/d	8.0	7.6	9.1	9.0	0.7	6.1	10.7	0.5	0.05	0.70	0.84	<0.001
Retention, g/d	5.5	4.1	5.9	6.9	2.2	2.2	9.0	1.9	0.37	0.89	0.52	0.02

	ource or v	itanini D ieu j	repartum on	colosti ulli yiei	u anu com	position in i	Toistein cows	
	Positiv	e DCAD	Negativ	e DCAD			P-valu	1e ²
Item	Cholec	Calcidiol	Cholec	Calcidiol	SEM	DCAD	Vitamin D	DCAD x Vitamin I
Colostrum yield, kg	5.86	7.68	6.21	7.96	1.06	0.77	0.10	0.97
Fat, %	4.02	5.37	5.40	4.24	0.54	0.83	0.87	0.02
Fat, kg	0.25	0.43	0.30	0.39	0.08	0.93	0.12	0.58
Protein, %	11.9	15.8	14.9	14.9	0.89	0.23	0.03	0.04
Protein, kg	0.66	1.20	0.88	1.17	0.17	0.57	0.02	0.47
Lactose, %	2.94	2.47	2.49	2.41	0.14	0.07	0.05	0.16
Lactose, kg	0.18	0.19	0.17	0.19	0.03	0.87	0.50	0.82
SNF, %	16.8	20.6	19.6	19.6	0.86	0.27	0.03	0.03
5.6	0.95	1.57	1.19	1.55	0.22	0.62	0.03	0.56
TS, %	20.9	26.0	25.1	23.9	1.00	0.31	0.05	0.002
TS, kg	1.21	2.00	1.49	1.94	0.29	0.70	0.04	0.55
Net Energy, Mcal/kg	1.16	1.48	1.44	1.33	0.07	0.35	0.10	0.001
Net Energy, Mcal	6.7	11.5	8.4	11.0	1.7	0.73	0.04	0.53
Urea N. mg/dL	35.2	39.5	35.4	38.7	2.3	0.90	0.10	0.82
IgG, g/L	45.3	57.7	50.6	60.1	3.8	0.31	0.005	0.70
Somatic cell score	6.45	6.96	6.38	7.18	0.44	0.87	0.14	0.74

	аточит	or vitami	n D fed j	prepartu	m on co	olostrum						
	CH		ment ⁻	ΔT		Parits	,			P.	value ²	
Item	1 mg	3 mg	1 mg	3 mg	SEM	Nulliparous	Parous	SEM	Source	Amt	Source× Amt	Parity
Yield, kg	4.8	4.4	5.9	5.2	0.6	4.5	5.7	0.4	0.10	0.35	0.80	0.04
Fat, %	5.7	6.3	6.2	6.8	0.4	7.6	4.9	0.3	0.20	0.14	0.99	< 0.00
Fat, kg	0.29	0.28	0.41	0.38	0.05	0.37	0.31	0.04	0.04	0.68	0.78	0.24
Protein, %	14.4	14.0	14.7	13.7	0.4	13.8	14.6	0.3	0.89	0.06	0.50	0.07
Protein, kg	0.69	0.60	0.86	0.71	0.08	0.62	0.81	0.06	0.08	0.15	0.68	0.03
Lactose, %	3.33	3.24	3.24	3.40	0.08	3.35	3.26	0.06	0.72	0.64	0.11	0.30
Lactose, kg	0.16	0.14	0.20	0.18	0.02	0.15	0.19	0.02	0.10	0.38	0.85	0.06
SNF, %	19.11	18.64	19.32	18.57	0.04	18.62	19.21	0.03	0.85	0.10	0.70	0.15
SNF, kg	0.88	0.81	1.14	0.96	0.11	0.83	1.07	0.08	0.06	0.25	0.64	0.04
TS, %	24.8	25.1	25.6	25.6	0.6	26.2	24.3	0.5	0.27	0.78	0.75	0.006
TS, kg	1.20	1.07	1.58	1.31	0.16	1.21	1.37	0.12	0.05	0.20	0.64	0.38
Net energy,	1.50	1.53	1.56	1.57	0.05	1.65	1.44	0.03	0.28	0.71	0.83	< 0.00
Mcal/kg												
Net energy, Mcal	7.3	6.7	9.6	8.3	1.0	7.7	8.3	0.7	0.05	0.34	0.73	0.53
SCS	7.2	7.2	7.2	7.1	0.2	7.5	6.9	0.2	0.83	0.89	0.90	0.03
IgG, g/L	108	110	114	103	6	97	120	5	0.94	0.48	0.33	< 0.00
TICAC	494	477	634	505	65	426	629	55	0.18	0.25	0.38	0.003

Ellect of DCAD and S	source of vita	min D fed prepa	artum on per	formance in t	he first 49	d postpart	um in Holsteii	1 cows
	Positive	e DCAD	Negativ	e DCAD			P-va	llue
Item	Cholec	Calcidiol	Cholec	Calcidiol	SEM	DCAD	Vitamin D	DCAD x Vitamin I
Yield, kg/d								
Milk	31.5	35.4	31.4	34.9	1.4	0.79	0.008	0.90
3.5% FCM	37.0	40.1	37.5	41.9	1.8	0.50	0.04	0.72
ECM	35.6	38.6	36.0	40.4	1.7	0.53	0.03	0.68
Fat								
%	4.56	4.37	4.62	4.77	0.12	0.05	0.89	0.15
Yield, kg	1.43	1.53	1.46	1.66	0.81	0.33	0.07	0.54
True protein								
%	3.16	3.10	3.14	3.25	0.09	0.48	0.73	0.36
Yield, kg	0.98	1.07	0.97	1.11	0.06	0.82	0.06	0.70
Lactose								
%	4.70	4.74	4.77	4.76	0.04	0.24	0.73	0.59
Yield, kg	1.49	1.67	1.54	1.67	0.07	0.78	0.03	0.73
Somatic cell score	2.30	2.51	2.25	2.77	0.36	0.77	0.31	0.67

Prepartum Calcidiol Increased Milk Yield

	Treatment ¹											
	CHOL CAL		٩L		Parit	ý		P-value ²				
Item	1 mg	3 mg	1 mg	3 mg	SEM	Nulliparous	Parous	SEM	Source	Amt	Source × Amt	Parity
Milk, kg/d ³	36.9 ^{ab}	34.1ª	36.4 ^{ab}	38.7 ^b	1.39	31.2	41.8	1.3	0.12	0.85	0.05	<0.00
ECM, kg/d ⁴	37.5	35.1	38.1	39.9	1.47	32.4	42.8	1.4	0.06	0.84	0.14	<0.00
Fat, %	4.33	4.53	4.68	4.58	0.11	4.66	4.40	0.09	0.08	0.69	0.18	0.06
Fat, kg/d	1.45	1.33	1.49	1.54	0.07	1.29	1.62	0.06	0.07	0.63	0.19	< 0.00
Protein, %	3.24	3.26	3.42	3.27	0.06	3.31	3.29	0.04	0.12	0.29	0.14	0.74
Protein, kg/d	1.08	0.97	1.10	1.12	0.05	0.92	1.21	0.04	0.12	0.41	0.26	< 0.00
Lactose, %	4.73	4.72	4.61	4.67	0.04	4.73	4.64	0.03	0.06	0.48	0.32	0.06
Lactose, kg/d	1.61	1.46	1.53	1.65	0.08	1.34	1.78	0.06	0.50	0.83	0.07	< 0.00
SCS	2.79	3.57	3.39	3.09	0.31	3.55	2.87	0.28	0.82	0.39	0.05	0.10

UNIVERSITY of FLORIDA Department of Animal Sciences

Choline: An Essential Nutrient for Dairy Cows

Usman Arshad Department of Animal Sciences University of Florida

Hepatic Triacylglycerol and Yields of Milk and ECM Linear effect of TAG: P = 0.03 Linear effect of TAG: P = 0.01 Outdrift of first of IAG: P = 0.02

1

Hepatic Triacylglycerol and Incidence of Diseases and Survival

	Hepatic t	riacylglycerol, %	wet-basis	Р	-value
Item	2.5	5.0	7.5	Linear	Quadratic
Clinical diseases, %					
Retained placenta	9.3 ± 2.7	11.9 ± 3.2	15.1 ± 4.7	0.12	
Metritis	12.5 ± 3.4	18.2 ± 4.5	25.7 ± 6.8	0.01	
Puerperal metritis	$\textbf{6.7} \pm \textbf{2.3}$	10.2 ± 3.4	13.5 ± 5.4	0.07	
Mastitis	14.2 ± 3.2	16.9 ± 3.3	19.9 ± 4.5	0.15	
Morbidity	36.2 ± 5.0	41.3 ± 5.4	46.7 ± 6.9	0.10	
Multiple diseases	8.7 ± 2.9	13.7 ± 4.1	21.1 ± 6.6	0.01	
Left the herd by 300 DIM, %	8.9 ± 1.9	11.0 ± 1.8	13.7 ± 2.8	0.10	
Subclinical diseases, %					
Hyperketonemia	15.2 ± 3.1	24.7 ± 3.8	$\textbf{37.5} \pm \textbf{5.6}$	< 0.01	
Hypocalcemia	30.3 ± 6.5	40.8 ± 7.1	52.4 ± 8.1	< 0.01	
			Arshad and Sant/	os (2022) J. Da	airv Sci. 104:1-17

Choline: An Essential Nutrient

✓ Choline is an essential nutrient for all mammals; required for the normal function of cells

✓ In early 90's, it was well established that dietary choline is completely degraded by rumen microbes and, that's why, choline must be fed in a rumen-protected form to dairy cows

✓ Choline deficiency results in the development of fatty liver in most species

Nutrient Requirements of Dairy Cattle (NRC, 2021)

Taylor et al. (2018) Nut. Today 53:240-253 Sharma and Erdman (1989) J. Dairy Sci. 72:2772-2776

- ✓ NRC (2021) currently recommends a minimum 1,000 mg of choline per kilogram dry matter of milk replacer for calves
- ✓ However, the recommended amount of choline, either for the dry or lactating dairy cow, has not been established

Effect of RPC on Health: A Meta-Analysis

Least squares means and respective SEM for incidence of clinical diseases according to supplementation of choline ion when fed during transition period in dairy cows

		Treati		
Item	Means (Exp.), ² n	Control	Choline	P-value
Retained placenta	38 (11)	10.6 ± 2.9	7.5 ± 2.2	0.06
Metritis	28 (09)	11.7 ± 2.2	8.7 ± 1.8	0.19
Mastitis	34 (11)	14.8 ± 3.0	11.7 ± 2.5	0.09
Milk fever	38 (11)	2.5 ± 1.5	1.5 ± 0.9	0.23
Displaced abomasum	38 (11)	6.0 ± 1.7	5.2 ± 1.5	0.67
Ketosis	36 (10)	12.0 ± 3.0	12.1 ± 3.0	0.96
Disease cases/cow	40 (12)	0.55 ± 0.1	0.48 ± 0.1	0.23

¹Treatment as a categorical parameter in the statistical models (not supplemented vs. supplemented) because the majority of experiments that reported diseases supplemented choline ion at 12.9 g/d. The mean (\pm SD) amounts of supplemental choline for experiments reporting data on health was 13.3 \pm 2.6.

²Number of treatment means (experiments) that contributed data for statistical analyses.

Arshad et al. (2020) J. Dairy Sci. 103:282-300

5

Hypotheses

- ✓ Rumen-protected choline (RPC) reduces hepatic triacylglycerol and increases glycogen contents during induction of fatty liver in Holstein dairy cows
- ✓ The reduction in hepatic triacylglycerol content is mediated by increasing triglyceride-rich lipoprotein secretion rate

Objectives

- ✓ Determine the effect of sources of RPC with a low (28.8%) or high concentration (60.0%) of choline chloride when fed as 0, 12.9 or 25.8 g/d of choline ion
 - ✓ Hepatic composition and mRNA
 - ✓ Blood metabolites
 - ✓ Secretion rate of triglyceride-rich lipoprotein

Experimental Design Day 14 – Secretion

Energy Measures, and Hepatic Metabolism

H12.9

7.69

0.93

0.90

6.61

3.13

1.30

1.03

1.09

0.82

H25.8

7.69 0.21 0.72

0.86 0.06 0.64

0.89 0.06 0.20

6.00 0.55 < 0.01

4.07

1.19

1.42

1.11

0.83 ----

0.18 < 0.01

SEM RPC

Treatment

L25.8

7.19

0.92

0.87

5.05

3.55

1.04

1.16

1.12

0.88

CON

7.44

0.94

0.96

9.32

1.83

1.00

1.00

1.00

1.00

Item

NE intake. Mcal/d

Blood metabolites Fatty acids, mM

β-hvdroxvbutvrate, mM

Hepatic composition, as-is

Hepatic mRNA, fold change

Triacylglycerol, %

Glycogen, %

BHMT

MTTP

ATG3

ERN1

11

L12.9

7.42

0.94

0.90

6.59

2.59

1.19

1.13

1.18

0.85

P-value

Amount

0.48

0.35

0.63

0.02

< 0.01

0.12

0.05

0.64

0.67

SxA

0.47

0.56

0.85

0.29

0.91

0.74

0.07

0.37

0.85

Source

0.02

0.36

0.90

0.28

< 0.01

0.10

Arshad et al. (2020) J. Dairy Sci. (Suppl. 1) Abstr. 103

0.05

0.09 0.42

0.01 0.31

0.02 0.47

0 min 10 min 20 min 40 min 60 min 120 min 180 min 240 min 480 min 720 min Blood collection

✓Blood was assayed to determine concentrations of serum triacylglycerol after tvloxapol infusion

Λ

13

15

✓ Feeding RPC during negative nutrient balance promotes lipotropic effects independent of source that reduces the risk of fatty liver in dairy cows

Acknowledgements Lab Personal and Interns: Advisor: Lab Colleagues: • Dr. José Eduardo P. Santos Michael Poindexter Sergji Sennikov Rodrigo O. Rodrigues Ali Husnain Research Collaborator: Roney Zimpel Karla Ferreira Balchem Corporation Achilles Vieira Neto lago Leão • Dairy Research Unit, UF Kleves Almeida Kleves Almeida Mariana N. Marinho Vitória Camargo Félix Welter

Pictures by Bonnie Mohr http://www.bonniemohr.com/

Introduction • Nitrogen utilization efficiency (NUE; milk N/N intake) is typically low in dairy cattle - 20 to 35% (Chase et al., 2009) • Excreted dietary N is lost in the form of NH₃, N₂O and NO₃ - Contributes to acidification, eutrophication, and climate change and may negatively affect human health (Groenestein et al., 2019) 296 times higher impact than CO2 Dietar Nitrate and NH4+ groundwater contamination Ν IF FLORID

1

T 1	
Introd	luction
muou	lucuon

· Increased N efficiency may have production and economic benefits to dairy farming

- Milk yield and income over feed cost (IOFC) of Canadian dairy farms

Item		CE	Dualua			
Item	NE22	NE27	NE30	NE36	SE	<i>r</i> -value
Milk yield, kg/d	28.7 ^b	31.1ª	31.9ª	32.5ª	0.82	< 0.01
IOFC, \$/cow per day	14.3°	16.4 ^{bc}	17.2 ^{ab}	18.2ª	0.55	< 0.001

NE22; nitrogen efficiency 22%, NE27; nitrogen efficiency 27%, NE30; nitrogen efficiency 30%, NE36; nitrogen efficiency 36%, Adapted from Fadul-Pacheco et al., 2017

Research Rationale

Determining optimal nitrogen utilization efficiency is crucial to enhance the profitability and environmental performance indicators of commercial dairy farms

UF FLORIDA

UF FLORIDA

Stat	istical Analysis				Res	ults		
The MIXED procedure of SAS was us	ed (v. 9.4, SAS Institute Inc., Cary, NC)	Т	able 2. Mean, minimum, m	aximum a	nd standard	deviation	of 61 lactating	cow diets
The model included;			Item, % of DM	Ν	Mean	Minimum	Maximum	SD
Y = NEL + NEO + Par + LS + (NE)	$L \times Par$) + (NEO × Par) + (NEL × LS) + (NEO × LS)		СР	61	17.14	11.48	20.69	1.41
			Starch	61	22.38	10.72	28.71	3.99
Y = dependent variable; NEL = linear covariate of NUE:	Par = cow parity (primiparous vs. multiparous); LS = lactation stage (early-mid-late-lactation);		aNDFom	61	28.14	23.25	34.15	2.72
NEQ = quadratic covariate of NUE;	Interactions		ADF	61	19.66	14.76	24.87	2.19
Don nosted within head was used as rea	dom offeet		Lignin	61	3.58	1.68	5.14	0.92
A stepwise backward elimination was u	sed to remove non significant interactions one predictor		WSC	61	7.73	3.10	13.71	2.39
at a time based on the largest P-value	set to remove non-signmeant interactions one predictor		EE	61	5.35	2.93	7.11	0.86
			Ash	61	7.97	n Minimum Maximum 4 11.48 20.69 8 10.72 28.71 4 23.25 34.15 6 14.76 24.87 3 1.68 5.14 3 3.10 13.71 5 2.93 7.11 7 5.50 11.44 redicate scale form	1.32	
Full model: $MY = NEL + NEQ + Par + I$	$LS + (NEL \times Par) + (NEQ \times Par) + (NEL \times LS) + (NEQ \times LS)$		Diets were reconstituted	with indiv	idual ingred	ients collecte	d in each farr	n and analyzed
Rerun the model : $MY = NEL + NEC$	$Q + Par + LS + (NEQ \times Par) + (NEL \times LS) + (NEQ \times LS)$		with wet chemistry metho	od	U			5
Final model: 1	MY = NEL + NEQ + Par + LS							

UF FLORIDA

9

۱.			
•			

Table 1. Mean, minimum, ma	ximum ar	nd standard	deviation of	f 285 pens (t	otal # cows	; 70461)
Item	Ν	Mean	Minimum	Maximum	SD	
Herd	23	3063	320	5462	1614	
Pen size	285	247	24	597	110	
Parity	285	2.15	1	4.41	0.88	
DIM	285	164	7	393	86	
DMI, kg/d	285	24.96	10.0	33.8	3.6	
Milk yield, kg/d	285	36.9	16.2	62.5	8.1	
3.5% FCM, kg/d	285	40.2	18.2	65.5	7.6	
ECM, kg/d	285	39.7	18.0	65.0	7.3	
Protein, %	285	3.30	2.71	4.3	0.33	
Fat, %	285	4.08	3.33	5.42	0.46	
Protein yield, kg/d	285	1.21	0.54	2.01	0.23	
Fat yield, kg/d	285	1.49	0.69	2.37	0.28	
MUN, mg/dL	137	12.45	6.7	28.74	3.41	
N intake, kg/d	285	0.68	0.28	0.98	0.11	
Milk N, kg/d	285	0.19	0.086	0.317	0.04	
NUE, %	285	27.95	14.2	51.47	4.94	

Ass	ociatio	n Betw	een Nl	JE and	Produ	ction Par	amete	rs
Table 3. Assoc	iation betw	veen produ	ction parat	meters and 1	iitrogen u	tilization effi	iciency in	dairy cows
				P-va	lues			
Item	NE	Parity	DIM	$\mathbf{NE}\times\mathbf{NE}$	NE×P	NE×NE×P	NE×D	NE×NE×D
Milk yield, kg/d	< 0.01	< 0.01	< 0.01	< 0.01	NS	NS	NS	NS
ECM, kg/d	< 0.01	< 0.01	< 0.01	NS	NS	NS	< 0.01	NS
3.5%FCM, kg/d	< 0.01	< 0.01	< 0.01	NS	< 0.01	< 0.01	NS	NS
Protein, %	< 0.01	0.9074	< 0.01	NS	NS	NS	NS	NS
Fat, %	< 0.01	0.4926	< 0.01	NS	NS	NS	NS	NS
Protein yield, kg/d	0.1992	< 0.01	< 0.01	NS	< 0.01	< 0.01	NS	< 0.01
Fat Yield, kg/d	0.4719	< 0.01	< 0.01	NS	< 0.01	< 0.01	NS	< 0.01
1, 2, 3 NE, P and L	S defined as n	nitrogen utiliza	tion efficienc	y, parity and la	ctation state,	respectively.		

UF FLORIDA

Λ

Parameter	Nitrogen efficiency, %	Crude protein, %	Starch, %	aNDF, %	WSC, %
Nitrogen efficiency, %	1	-0.43	0.18	0.18	0.06 *
Crude protein, %		1	-0.26	-0.30	-0.14
Starch, %			1	-0.49	-0.50
aNDF, %				1	0.18
WSC, %					1
*P-value > 0.10					
¹ WSC – water soluble	carbohydrates				

Future Directions

- Evaluate income over feed costs of commercial pens used for data collection
- Estimate manure N excretion in pens
- Compare NRC and CNCPS models for N requirements using our dataset

UF FLORIDA

19

Assessing Feed Efficiency and its Association with Production, Health and Reproduction in Dairy Cows

Mariana Nehme Marinho Department of Animal Sciences University of Florida

1

Residual Feed Intake: A Better Trait to Measure Feed Efficiency

- ✓ Residual feed intake (RFI) is a trait that directly measures feed conversion efficiency
- ✓ Differs from Gross Feed Efficiency (ECM/DMI):
 - ✓ Energy required for production, maintenance, tissue accretion/loss, and adjusted for cohort

Association Between RFI and Performance in Early Lactation

	F	RFI in mid-la				
Item, early lactation	Q1	Q2	Q3	Q4	SEM	P-value
Cows, n	98	98	99	98		
DMI, kg/d	16.0	16.9	17.3	18.4	0.3	< 0.001
Energy-corrected milk, kg/d	37.2	38.5	39.4	38.3	0.8	0.32
Energy balance, Mcal/d	-9.0	-8.1	-8.2	-5.5	0.5	< 0.001
BW change, kg/d	-1.38	-1.38	-1.20	-1.20	0.11	0.41
Body condition, 1 to 5	3.35	3.31	3.30	3.21	0.03	0.001
Milk N. % N intake	39.6	38.8	39.7	36.0	0.7	< 0.001

Nehme Marinho et al. (2021) J. Dairy Sci. 104: 5493-5507

9

Association Between RFI with Incidence of Diseases and Survival

	F	RFI in mid-la	ctation, qua	rtiles	i	
Item	Q1	Q2	Q3	Q4	SEM	P-value
Cows, n	98	98	99	98		
Somatic cell score	2.38	2.66	2.83	2.66	0.19	0.41
Retained placenta, %	12.2	13.3	11.1	14.3	3.3	0.92
Metritis, %	13.3	19.4	17.2	22.5	4.0	0.40
Mastitis, %	15.3	13.3	12.1	15.3	3.5	0.89
Displaced abomasum, %	1.0	2.0	3.0	4.1	1.5	0.60
Lameness, %	10.2	5.1	2.0	8.2	2.4	0.14
Respiratory, %	2.0	3.1	1.0	2.0	1.4	0.81
Left herd by 300d, %	10.2	13.3	5.1	9.2	2.9	0.29

Λ

13

Can we Select for RFI?

✓ Feed Saved (FSAV)

✓ Includes the economic values of cow body weight composite (BWC) with residual feed intake (RFI)

✓ FSAV PTA represents the expected pounds of feed saved per lactation

✓ Formulas:

PTA FSAV = -1(PTA RFI) - 151.8 (PTA BWC)

 $BWC = (0.23\ x\ stature) + (0.72\ x\ strength) + (0.08\ x\ body\ depth) + (0.17\ x\ rump\ width) - (0.47\ x\ dairy\ form): each unit represents 35\ lb\ of\ mature\ BW$

✓ Example

	Cow A	Cow B	Cow C
Weight (lb)	1500	1570	1430
BWC	0	+1.5	-1.5
Milk yield (lb/lact)	25,000	25,000	25,000
Expected DMI (lb/lact)	18,000	18,300	17,500
Actual DMI (lb/lact)	18,000	18,500	17,300
RFI (lb/lact)	0	+200	-200
Feed saved (lb/lact)	0	-428	+428

PTA FSAV = -1(-200) - 151.8 (-1.5) = +428 lb of feed saved per lactation

Association Between RFI and Reproductive Performance

	I	RFI in mid-la				
Item	Q1	Q2	Q3	Q4	SEM	P-value
Cows, n	212	213	213	213		
Inseminated, %	98.4	99.1	97.7	99.1	0.8	0.7
First Al						
Pregnant d 74, %	31.0	30.9	30.5	26.5	3.5	0.72
Second Al						
Pregnant d 74, %	38.5	29.0	27.4	17.6	4.2	<0.001
Pregnancy per Al all Al, %	31.4	30.6	31.2	24.5	2.2	0.03
Pregnant by 300 d, %	79.0	80.7	82.4	71.5	3.3	0.05
21-d cycle pregnancy rate	21.2	21.1	22.0	16.6	1.9	0.02

<u>Preweaning</u>	Postweaning	
Prenatal nutrition	Transportation	
Colostrum intake	Commingling	
BVDV-PI	Receiving management	
Preweaning health	Receiving diet	
Preshipment management	Metaphylactic treatments	
	Galyean, Duff, and Rivera (2022)	N
Children and the state of		NUMBER

Stress (NASEM, 2016)

- Non-specific response of the body to any demand placed on it
- An abnormal or extreme adjustment in the physiology of an animal to cope with adverse effects of its environment and management
- The purpose of proper animal husbandry is to reduce the risk to the animal by stressors; weaning stress, commingling, environmental, handling, nutritional, and people stress
- Reduce the risk of clinical disease and enhance performance and carcass merit

N

Pathogenesis

- Compromised immune
 system
- Viral infections precede
 bacterial
- Bacteria
 - Commensal
- Spread from URT to lung
- Bronchopneumonia

Feed intake

Dry matter feed intake of newly arrived calves (% of body weight)

Days from receiving	Healthy (SD)	Sick (SD)	
0 to 7	1.55 (0.51)	0.90 (0.75)	
0 to 14	1.90 (0.50)	1.43 (0.70)	
0 to 28	2.71 (0.50)	1.84 (0.66)	
0 to 56	3.03 (0.43)	2.68 (0.68)	
	Hutcheson a	nd Cole (1986)	

Energy

- Cattle requirements for energy
 - Net energy for maintenance (NE_m)
 Metabolism (normal body functions)
 - Net energy for gain (NEg)
 - Anabolism (muscle and fat deposition)
 - Negative energy balance
 - Catabolism (body wasting)
 - Low feed intake during receiving period

Metabolic Costs of the Immune Response

- Decreased ME intake has been associated with decreases in FHP in pigs (Labussière et al., 2011; Campos et al., 2014) and ruminants (Ferrell et al., 1986; Ferrell and Koong, 1987; McCurdy et al., 2010).
 Decreased maintenance requirements
- Decreased DM intake associated with immune challenge
- During an immune challenge, an increase in ME_m was observed in pigs (Campos et al., 2014).
 - Resulted in decreased ${\rm ME}_{\rm g}$ (3.3 to 1.7 Mcal/d) and subsequent protein and fat deposition.

9

Metabolic Costs of the Immune Response

- Fever increases caloric demand 7 to 15% per degree Celsius increase in body temperature (Rauw, 2012).
 - Calories come from body stores.
- Increased fractional rate of protein synthesis in liver (141%) and plasma (161%) in chickens.
- Certain types of proteins are synthesized at accelerated rates, whereas many individual amino acids may be wasted for processes such as gluconeogenesis.
- Under stress animals allocate their limited resources between combating the stressor and maintaining other functions.

JØ(

		cheal cha	lienge		
	Dis Control	ease Challenge	SEM	P-Va Disease	Diet
Essential amino acids, μΜ	793	722	38.7	0.22	0.68
Non essential amino acids, μΜ	1173	924	46.2	<0.001	0.67
Total amino acids, μΜ	1966	1645	81.4	0.11	0.67

Amino acid hepatic flux in steers fed or fasted with or without a *M. haemolytica* intractracheal challenge 40.0 Control Challenge Disease effect, P = 0.02 SEM = 45.4 20.0 0.0 h/loi -20.0 -40.0 ž Disease effect, P = 0.03 SEM = 28.5 acid -60.0 Å, -80.0 Disease effect, P = 0.11 SEM = 19.6 -100.0 Essential amino acids Non essential amino acids Total amino acids -120.0 N (Burciaga-Robles et al., 2011)

13

	Control	Challenge	P-value	SEM
Ornithine, mmol/h	-2.03	-19.01	0.08	7.03
Γryptophan, mmol/h	0.48	-2.01	0.04	0.87
Lysine, mmol/h	-2.03	-19.02	0.08	7.04
Tyrosine, mmol/h	-0.74	7.12	0.004	1.47
Phenylalanine, mmol/h	-2.44	-6.84	0.06	1.55
Histidine, mmol/h	-5.72	-13.94	0.03	2.57
Aspartic acid, mmol/h	-0.04	-0.91	0.04	0.31
Leucine, mmol/h	-2.44	-6.84	0.06	1.55
Glutamine, mmol/h	45.87	16.64	0.06	10.32

Signals that link pathogen sensing and growth biology

- Bacterial infection stimulates the production of a number of the proinflammatory cytokines, including interleukin-1 (IL-1), IL-6, and TNFα, by macrophages/monocytes and neutrophils (Matsumura et al., 2000).
- Subsequently, a wide variety of pathologic and host defense reactions are induced, such as fever, pain and synthesis of acute-phase proteins (Matsumura et al., 2000).

14

N

BW, kg 500 400 ■0X 300 ■1X ■2X ■ 3X 200 ■C 100 0 d 65 d 122 Arrival d 0 Final N SEM = 9.15 SEM = 18.38 SEM = 19.90 SEM = 17.23 SEM = 10.59 L, P = 0.84 Q, P = 0.51 3 vs. C, P = 0.11 L, P < 0.001 Q, P = 0.01 3 vs. C, P < 0.001 L, P < 0.001 Q, P = 0.03 3 vs. C, P < 0.001 L, P < 0.001 Q, P = 0.51 3 vs. C, P = 0.11 L, P = 0.58 Q, P = 0.18 3 vs. C, P = 0.01

25

N

Effects of BRD on HCW, kg

Study	Untreated	Treated	Change	P-value
Holland et al. (2010) n = 193 heifers	343	336	-7	> 0.10
Garcia et al. (2010) n = 642	371	366	-5	= 0.06
Schneider et al. (2009) n = 5,976	323	315	-8	< 0.10
Gardner et al. (1999) n = 204 steers	332	319	-13	< 0.01

Study	Untreated	Treated	Change	P-value
Holland et al. (2010) n = 193 heifers	1.48	1.36	-0.12	> 0.05
Garcia et al. (2010) n = 642	1.17	1.02	-0.15	< 0.01
Schneider et al. (2009) n = 5,976	1.17	1.09	-0.08	< 0.01
Gardner et al. (1999) n = 204 steers	1.17	0.93	-0.24	< 0.01

Effects of B 400 = Smal	RD on I 00	mar	bling	score	ž
Study	Untreated	Treated	Change	P-value]
Holland et al. (2010) n = 193 heifers	480	449	-31	< 0.10	-
Garcia et al. (2010) n = 642	538	534	-4	= 0.22	-
Schneider et al. (2009) n = 5,976	538	525	-13	< 0.01	
Gardner et al. (1999) n = 204 steers	338	327	-11	= 0.16	-
Average	e decreas	se = 15	± 12 uni	its	-

adhesion scores and carcass	ted for BR	D during th	e receiving	g period or	n ultrasoun	d estimates	lung consoli	lation and	
duncsion scores, and carcass	linaracterits		Jorea Steel						
					De chad	0	P-value ²	0	
10.001	Ant	imicrobials	administe	red*	Pooled	Overall	Linear	Quadratic	
variable	UX	1X	28	3/4X	SEIVI	P-Value	contrast	Contrast	
Ultrasound Estimates ³									
d 91 REA, sq cm**	81.3	84.1	77.0	73.7	1.49	<0.01	<0.01	0.05	
d 91 12 th -rib fat, cm	0.82	0.82	0.81	0.72	0.04	0.21	0.08	0.25	
d 91 IMF*	4.55	4.29	4.42	4.04	0.15	0.10	0.04	0.70	
d 138 REA, sq cm**	88.9	89.6	84.6	83.8	1.71	0.05	0.01	0.65	
d 138 12 th -rib fat, cm	0.94	0.93	0.91	0.91	0.05	0.95	0.60	0.99	
d 138 IMF	4.60	4.28	4.49	4.24	0.15	0.32	0.22	0.83	
Lung Score ⁴									
Consolidation**	0.38	0.54	1.06	0.97	0.16	0.01	<0.01	0.42	
Adhesion	0.73	0.96	0.67	0.83	0.14	0.47	0.99	0.81	
HCW, kg**	372	369	360	353	3.66	<0.01	<0.01	0.63	
Dressing percentage**	65.5	64.6	64.2	64.0	0.27	<0.01	<0.01	0.23	
REA, sq cm**	91.8	93.9	90.8	87.3	1.56	0.05	0.03	0.09	
12th-rib fat, cm	1.33	1.28	1.36	1.40	0.09	0.83	0.49	0.63	
KPH fat, %	2.17	2.01	2.08	2.00	0.06	0.26	0.16	0.55	
Marbling number ⁵	451	428	426	406	16.7	0.29	0.10	0.91	
Prime and Choice ⁶ , %*	70.3	56.5	60.2	36.2	9.15	0.06	0.03	0.54	-
Yield grade	2.81	2.60	2.75	2.91	0.16	0.59	0.53	0.26	5.5
Liver Score ⁷	0.67	0.23	0.63	0.46	0.27	0.65	0.86	0.61	

How does the proinflammatory response decrease cattle growth and carcass merit?

- Surviving the immune insult becomes priority
- Initial processes catabolic in nature to retrieve needed substrate from storage depots
 - Increased demand of calories due to febrile response
 - Decrease in calorie consumption
- During infection, cytokines not only regulate the immune response, but also modify growth by redirecting nutrients in support of immune function

(Spurlock, 1997)

N

Implications

38

- During inflammation, nutrient use is shifted towards survival rather than growth
- To diminish alteration in growth
 - Mediate proinflammatory response
 - Maintain calorie and nutrient intake
 - Continue to assess and develop nutritional and health strategies to alleviate disease
- Work toward management systems that prepare cattle for transition (vaccination, weaning, nutrition programs).

Outline

- Nutrient demand during disease challenges
- Implications of reduced intake
- Why the drop in feed intake?
- Opportunities to intervene?

K MICHIGAN STATE UNIVERSITY

Innate immune response

•LPS = lipopolysaccharide from cell wall of Gram negative bacteria

•Cytokines = hormones produced mostly by immune cells

K MICHIGAN STATE UNIVERSITY

Metabolic costs of disease

- 1. Increased metabolic activity 10 – 40% increase over basal maintenance energy
- 2. Reduced nutrient availability
- 3. Altered priorities for nutrient utilization
- 4. Increased turnover rates in the immune system
- 5. Damage to host tissues
- 6. "Genetic cost" to offspring

K MICHIGAN STATE UNIVERSITY

Colditz et al., 2008

Outline

- Nutrient demand during disease challenges
- Implications of reduced intake
- Why the drop in feed intake?
- Opportunities to intervene?

10

K MICHIGAN STATE UNIVERSITY

Nematode infection model •36 ewe lambs, 5 months old (naïve) •4 treatments: • T. colubriformis larvae (80/kg BW/dose) • T. colubriformis larvae + weekly IM injection of Depredone (glucocorticoid) • Depredone (uninfected, immune-suppressed) Control (uninfected) •Duration: 3 doses per week until d 72

K MICHIGAN STATE UNIVERSITY

Greer et al., 2005

- Glucose is the main fuel used by phagocytic innate immune inflammation as a result
- BHB directly suppresses activation of inflammatory pathways and immune
- Not eating should decrease glucose and increase BHB

K MICHIGAN STATE UNIVERSITY

- Nutrient demand during disease challenges
- Implications of reduced
- Why the drop in feed intake?
- Opportunities to intervene?

MICHIGAN STATE UNIVERSITY

21

Anti-inflammatories can help in some cases Cows challenged with 25 E. coli mastitis had Dry matter intake, kg/d reduced DMI for 2 d • Treating with flunixin meglumine (Banamine) at onset of clinical symptoms Control delayed and lessened 0 -1 0 1 2 6 3 the reduction Day relative to challenge Yeiser et al., 2012 K MICHIGAN STATE UNIVERSITY

Are nutrient interventions wise for sick cattle?

- Low blood glucose is common in some disease states, particularly postpartum dairy cows. Infuse glucose?
 - May be counter-productive if it exacerbates an inflammatory state
- What about drenching sick calves with no interest in milk?
- · Should we use anti-inflammatories along with antibiotics for cattle with infections?

MICHIGAN STATE UNIVERSITY

MICHIGAN STATE UNIVERSITY

Why improving N efficiency in dairy cows?

- How N use efficiency evaluated
 Increasing milk N ÷ N intake
- Reducing feed protein supply
 - Economic impact
- Reducing N excretion and NH₃ emission from manure
 - Environmental impact

THE OHIO STATE UNIVERSITY COLLEGE of FOOD, AGRICULTURAL, and ENVIRONMENTAL SCIENCE

CFAES

Two different views on improving N use efficiency

- 1) Improving milk N ÷ N intake
 - N utilization within cows
 - Diet manipulation
- 2) Improving N use efficiency on a farm basis

THE OHIO STATE UNIVERSITY COLLEGE of FOOD, AGRICULTURAL, and ENVIRONMENTAL SCIENCE

- N utilization at farm level
- Diet manipulation

CFAES

2

Increasing milk N ÷ N intake

(Digestion studies at OSU by Dr. Weiss over 30 years)

- Energy supply
- Reducing dietary protein
- Formulating a diet for AA

THE OHIO STATE UNIVERSITY COLLEGE of FOOD AGRICULTURAL and ENVIRONM

Increasing rumen starch digestibility

- Feeding α -amylase-enhanced corn and corn silage (Enogen[®])

5

CFAES

Lowering Dietary Protein Supply

References	CP, % of DM	Milk N efficiency, %	Urinary N excretion	Milk yield
Colmenero and Broderick, 2006	16.5 vs. 15.0	$\textbf{31} \rightarrow \textbf{34}$	30% ↓	-
Chen et al., 2011	16.8 vs. 15.6	$\textbf{30} \rightarrow \textbf{32}$	15% ↓	-
Cabrita et al., 2011	16.0 vs. 14.8	$29 \rightarrow 33$	35% ↓	2 kg ↓
Lee et al., 2011	16.5 vs. 14.8	$28 \rightarrow 32$	30% ↓	3 kg \downarrow
Lee et al., 2012	15.7 vs. 13.6	$\textbf{29} \rightarrow \textbf{34}$	28% ↓	4 kg ↓
Arriola Apelo et al., 2014	16.9 vs. 15.0	$\textbf{33} \rightarrow \textbf{35^{\star}}$		2 kg ↓*

THE OHIO STATE UNIVERSITY COLLEGE of FOOD, AGRICULTURAL, and ENVIRONMENTAL SCIENCES

* Not statistically different

CFAES

Lowering dietary protein to improve N use efficiency

Reduced protein with AA supplementation

	16%	14%	14%LM	14%LMH	SEM	P-value		
Milk protein, %	2.98	2.94	2.99	3.03	0.030	0.23		
Yield, kg/d	1.13ª	1.01 ^b	1.10ª	1.14 ^a	0.025	<0.01		
Urine N, g/d	143ª	92 ^b	87 ^b	97 ^b	5.7	<0.01		
Milk N ÷ N intake	29 ^b	34ª	35ª	35ª	0.99	<0.01		
					Lee et al., 2012			

No responses to RP-AA

- RP-Met and Lys; Lee et al., 2012, 2015, 2019
- RP-Met decreased milk protein %; Potts et al., 2020

THE OHIO STATE UNIVERSITY COLLEGE of FOOD, AGRICULTURAL, and ENVIRONMENTAL SCIENCES

THE OHIO STATE UNIVERSITY COLLEGE of FOOD AGRICULTURAL and ENVIRONMENTAL SCIENCE

- RP-Lys; Malacco et al., 2022
- N-acetyl-L-Methionine; Amaro et al., 2022

9

CFAES

Feeding RP-AA to lactating cows

- What we must know when RP-AA are used is
 - Bioavailability
 - Rumen bypass and intestinal digestibility
- What if wrong bioavailability is used?
 - Creating an imbalance of metabolizable AA
 - Inefficient use of dietary AA or AA provided from RP-AA
 - No production response, an increase in N excretion
 - Increasing a feed cost but no returns

CFAES

Expectation when a diet is formulated for AA

- Increasing dietary N use efficiency
- Optimizing production, i.e., milk protein
- Lowering N excretion
 - Feeding RP-AA may become more popularMore variety of RP-AA will be available

THE OHIO STATE UNIVERSITY COLLEGE of FOOD, AGRICULTURAL, and ENVIRONMENTAL SCIENCES

10

CFAES Rumen protection of 2 prototypes 120 а N 98.9 b **1**5N % 100 85.1 Rumen protection, 80 60 40 20 5.8 5.4 0 Ρ2 Ρ3 Rebelo et al. unpublished THE OHIO STATE UNIVERSITY COLLEGE of FOOD, AGRICULTURAL, and ENVIRONMENTAL SCIEN

CFAES

Summary

- Increasing milk N ÷ N intake
 - Reducing N excretion
 - Reducing feed costs
- · Strategies from diet formulation
 - Energy supply to the rumen and mammary glands
 - Feed adequate protein, not deficient and excessive
 - More studies are needed for better consistent responses to feeding AA
 - A gold standard of an in vivo method is needed to determine bioavailability of RP-AA

THE OHIO STATE UNIVERSITY COLLEGE of FOOD, AGRICULTURAL, and ENVIRONMENTAL SCIENCES

CFAES

Underestimation of intestinal digestibility with PLA for P2

14

CFAES

Is reducing N excretion the best approach to increase N efficiency?

- Manure values as fertilizer
- Risk of performance
 - How low can dietary protein go?
 - What AA should be added?
 - Do we know bioavailability of RP-AA?

THE OHIO STATE UNIVERSITY COLLEGE of FOOD, AGRICULTURAL, and ENVIRONMENTAL SCIENCE

- Does stage of lactation affect the responses?
- Does it work for group-feeding?

Different approach to increase N use efficiency

- Increasing N use efficiency by lowering ammonia emissions from manure
- Why reducing ammonia emission?
 - Increasing farm-based N use efficiency
 - Manure value
 - Local environmental issues
 - Odor
 - Air quality
 - P runoff

MENTAL SCIENCES

THE OHIO STATE UNIVERSITY COLLEGE of FOOD, AGRICULTURAL, and ENVIRON

17

18

<page-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item>

CFAES

CFAES

crops

Environmental Footprints of Dairy Production Greenhouse gas emissions

Manure N can affect P utilization by

The ratio of N to P required = 6:1 The ratio of N to P required = 6:1 - 7:1

- Greenhouse gas
 emissions
- Fossil energy use
- Non-precipitation
 water use
- Reactive nitrogen (ammonia) loss

Fossil energy use: 0.3% of total U.S. Consumption Non-precipitation water use: 3% of total freshwater withdraw

(LCA; Rotz et al., 2021 ADSA virtual meeting)

Environmental Footprints of Dairy Production

21

н

CFAES

How can we lower ammonia emissions from manure

- Direct manure treatment
- Indirect manure treatment

THE OHIO STATE UNIVERSITY COLLEGE of FOOD, AGRICULTURAL, and ENVIRONMENTAL SCIENCES

22

CFAES

Effects of urease inhibitor on ammonia emission from manure

Indirect manure treatment: Diet manipulation to lower ammonia emissions

- Altering manure characteristics
 - Not easy and not as effective as direct manure treatment
 - No or minimal cost
 - No negative effects on production

25

CFAES

Feeding corn distillers grains with solubles replacing soybean meal

HE OHIO STATE UNIVERSITY COLLEGE of FOOD, AGRICULTURAL, and ENVIRONMENTAL SCIENCES

CFAES

Feeding corn distillers grains with solubles replacing soybean meal

	SBM	DG
Ingredients, DM %		
Corn silage	42	42
Alfalfa silage	10	10
Corn grain	13	13
SBM	15	0
DDGS	0	29
Chemical composition	on, % DM	
CP	17.6	17.6
NDF	30.5	30.0
Starch	20.4	21.5
	(Morris The ohio st	s et. al., 2018; Lee et al., 2020 are UNIVERSITY COLLEGE of FOOD, AGRICULTURAL, and ENV

CFAES				
Feedi	ng cor	n distille	ers grain	with
solub	les rep	lacing s	soybean	meal

Fresh manure		SBM		DG
Feces : urine		1.6		1.9
Manure, kg/d		82		79
Manure N, g/d	g/d		478	
Fecal N contribution, %	contribution, %		40	
Urinary N contribution,	%	60		55
Urine pH		8.5		7.5
DCAD (mg/kg)		192		65
	SBM		DG	i
Milk yield, lbs/d	41.0		41.	3
Milk protein, %	3.26	1	3.1	1 ^b
Milk fat, %	3.81ª	1	3.0	0 ^b
	(T	Morris et. al., HE OHIO STATE UNIVERSITY	2018	; Lee et al., 2020 of FOOD, AGRICULTURAL, and EN

29

		CON		MIC		LOW	
N		9		9		9	
Ingredient, % DM							
Forage		59.7		59.	7	59.7	
Concentrate		40.3		40.3	3	40.3	
Chemical Compositi	on						
СР		16.3		16.	2	16.2	
NDF		32.0		32.	3	31.8	
Starch	1		26.9		2	26.2	
DCAD, mEq/kg DM		192.8		101	.3	1.2	
			Diets	5		P-	value
	CON		MID	L	_OW	Linear	Quad
ecal pH	6.38		6.29	6	6.28	0.43	0.72
Irine pH	8.58		8.33	(6.72	<0.01	<0.01
lanure pH	7.57		7.40	•	6.96	<0.01	0.46
				(7	vnda et al	2021 · ir	n press)
				(Z	ynda et al.	, 2021; ir	n press)

Maternal nutrient restriction and fetal muscle development

Department of Animal Sciences

WASHINGTON STATE

- Maternal nutrition during different stages of pregnancy has specific effects on fetal development, especially muscle and adipose tissue development.
- Maternal undernutrition at mid-gestation leads to less muscle development; the excessive energy is deposited in adipose tissue in later life, reducing lean/fat ratio.
- Maternal undernutrition at late-gestation reduces the density of satellite cells, reducing postnatal muscle growth but largely recoverable.

13

Muscle growth and lean:fat ratio

WASHINGTON STATE UNIVERSITY Department of Animal Sciences

- On the other hand, late gestation and neonatal stage are important for intramuscular adipogenesis.
- better maternal nutrition at late gestation and neonatal stage promote intramuscular adipocyte formation and increase intramuscular fat (marbling) development of progeny.

UNIVERSITY	Depa	rtment of Animal Sciences	
	Tr	eatment	
Item	Native range ¹	Improved pasture ²	P-value
Birth weight, kg	38.7 ± 2.0	36.6 ± 1.9	0.46
Weaning weight, kg	242.1 ± 3.7	256.2 ± 3.5	0.02
Final body weight, kg	538.0 ± 8.3	560.2 ± 7.7	0.07
Average daily gain, kg/d	1.489 ± 0.067	1.656 ± 0.062	0.05
Total body weight gain, kg	180.2 ± 8.0	200.37 ± 7.5	0.05
Live weight at slaughter, kg	520.6 ± 7.7	543.9 ± 7.1	0.04

Underwood et al., Meat Science, 86:588-593.

UNIVERSITY	Department a		
	Tr	eatment	
Item	Native range ¹	Improved pasture ²	P-value
Longissimus muscle area, cm ²	75.4 ± 2.2	78.7 ± 2.0	0.26
Semitendinosus, % of HCW	1.16 ± 0.07	1.20 ± 0.07	0.19
Longissimus muscle WBSF, N	37.29 ± 1.28	31.00 ± 1.19	0.004
Collagen content, µg/mg of Ld muscle	19.2 ± 1.9	15.7 ± 1.9	0.08
Ether extract (fat, %)	4.82 ± 0.53	6.00 ± 0.49	0.06

content and increase in lipid content ---- production and quality problems having a fetal origin.

Underwood et al., Meat Science, 86:588-593

21

Maternal protein supplementation diverts adipogenesis to myogenesis in beef steers

		Treatment		P-value
Item	C^1	NR ²	NRP ³	Treatment
Live BW, kg	567 ± 22^{a}	588 ± 15^a	615 ± 18^a	0.240
HCW, kg	375.8 ± 13.8^a	377.4 ± 9.6^a	398.2 ± 11.2^a	0.313
LM area, cm ²	86.4 ± 4.2^{a}	88.0 ± 3.0^{a}	90.3 ± 3.4^{a}	0.762
St muscle (kg)	$2.44 \pm 0.15^{\text{b}}$	$2.55\pm0.10^{\mathrm{ab}}$	2.87 ± 0.12^{a}	0.067
St muscle % HCW	1.25 ± 0.05^{b}	$1.35 \pm 0.03^{\text{ab}}$	$1.44 \pm 0.04^{\rm ad}$	0.02
KPH, % HCW	3.05 ± 0.25^{a}	$2.88\pm0.17^{\mathrm{a}}$	$2.30\pm0.20^{\mathrm{b}}$	0.050

TATACI ITA ICTION CTATE

Increases adipocyte number and marbling WASHINGTON STATE Department of Animal Sciences Density of multipotent cells Conception Adipogenesis Birth 250 days Slaughter initiates Adipocyte hyperplasia Adipocyte hypertrophy Enhance marbling through genetic, nutrition and other strategies Enhancing adipocyte formation increases marbling. The number of multipotent cells decreases as animals become older. Thus, to increase adipocyte number in beef cattle, fetal and early post-weaning stages are the most effective stages.

UNIVERSITY			Department of Ani	mal Sciences	
Response	0 IU (n = 9)	150,000 IU (n = 7)	300,000 IU (n = 9)	SE	P-value
Ultrasound at transition to the finishing stage					
IMF, %	3.96 ^b	4.93ª	4.34 ^{ab}	0.26	0.036*
Rib fat, cm	0.38	0.38	0.41	0.03	0.659
Rump fat, cm	0.53	0.53	0.43	0.05	0.240
REA, cm ²	53.5	56.1	58.3	2.21	0.337
Carcass characteristics					
Carcass weight, kg	345.8	359.1	352.7	6.58	0.527
Dressing percent, %	59.8	58.8	59.7	0.51	0.468
Marbling score	583.3 ^b	671.7ª	610.0 ^{ab}	20.20	0.016*
КРН, %	2.34	2.18	2.15	0.14	0.661
REA, cm ²	82.1	85.6	84.3	5.42	0.565
Back fat, cm	1.30	1.45	1.27	0.10	0.421
Yield grade	2.99	3.07	2.95	0.18	0.921
^{&} 500 = small 0; 600 = modest 0;	700 = mo	derate 0	Harris	et al., JA	<i>SB,</i> 2018,

بالمعالجة والماسانين فالماسين الملامية

WASHINGTON STATE					
UNIVERSITY			Department of An	umal Sciences	
Response	0 IU	150,000 IU	300,000 IU	SE	P-value
	(n = 9)	(n = 7)	(n = 9)	52	, value
Birth to pre-weaning					
Birth weight, kg	35.4	35.9	35.8	0.58	0.932
Average daily gain, kg	0.88 ^b	0.98ª	1.00 ^a	0.02	0.034
Backgrounding					
Weaning weight, kg	223.6 ^b	245.1 ^{ab}	246 ^a	5.98	0.018*
Dry matter intake, kg/head/d	9.09	8.89	9.25	0.39	0.320
Average daily gain, kg	1.35	1.37	1.47	0.17	0.784
Feed/gain ratio, kg	6.73	6.55	6.43	0.62	0.944
Finishing					
Weight at 309-d, kg	312.1 ^b	333 ^{ab}	339.7 ^a	8.65	0.040*
Dry matter intake, kg/head/d	8.95	9.45	9.09	0.85	0.829
Average daily gain, kg	2.06	1.99	1.90	0.17	0.627
Feed/gain ratio, kg	4.35	4.76	4.79	0.13	0.219

Early nutrition and its impacts on overall cattle performance

Department of Animal Sciences

UNIVERSITY

- Vitamin A administration during early development promotes intramuscular adipocyte formation, providing sites for later intramuscular fat accumulation.
- In addition, it promotes calf growth, which is likely due to enhanced satellite cell activation and myogenesis.
- These changes are associated with enhanced angiogenesis.
- Mechanisms need to be further explored.

45

46

Early nutrition and its impacts on overall cattle performance

As a result, early nutrition also has large impacts on cattle reproduction and breeding.

condition scores.

Department of Animal Sciences

Provide cows with better nutrients have longterm impacts in improving the performance of cow-calf production.

- ***** By improving:
 - Enhancing pregnancy rate.
 - Calf muscle development, more lean meat.
 - Calf marbling, better quality.

More calves with better quality

Relationship between environments and body temperature and respiration rate of preweaned calves under a barn Segmented regression J. Dairy Sci. 103 https://doi.org/10.3168/jds.2020-18381 models to estimate THI 020 American Dairy Science Association" Published b thresholds for significant Methods for assessing heat stress in preweaned dairy calves exposed to chronic heat stress or continuous cooling changes in physiological responses under HS or CL B. Dado-Senn,* V. Ouellet,* G. E. Dahl, 6 and J. Laportat [P] 39.5 int = 67 Breakpoint = 65 $\Delta h = 0.03$ ∆b = 2.52 ä 39.0 oint = 69 b = 1.35 38.5 $\Delta b = -0.29$ 70 75 80 60 65 70 75 80 60 65 70 75 80 85 Curtesy of Dr. Jimena Laporta, UW-Madison Ambient ter Ambie erature Ambient temperature: CL=no point | HS=30° CL=no point | HS=22°C CL=22°C | HS=20°C

Potential approaches to mitigate heat stress impacts

- □ Management
 - Dry and clean bedding
 - o Shade
 - o Improve ventilation
 - Natural wind by hutch elevation
 - Cooling by fan
- Nutrition
 - o Water
 - o Calf starter
 - o Amount and frequency of milk replacer feeding

Conclusions

 \square Preweaned calves experience heat stress, and initiate evaporative cooling around 20 $^{\circ}\mathrm{C}$

Day to day and within a day temperature variation have negative impact on calf performance

Given the set of the s

CCP 1 – People: safety and decision making

- Have we done everything possible to ensure safety for us, our employees and our family members?
- Who is empowered to make the decision to start, alter or stop the harvest and ensiling process?

Every serious injury or fatality during the ensiling process could have been prevented!

Identify the decision-makers and empower them to make the 'right' decision in a timely manner.

6

6

© 2021 Chr. Hansen A/S. All rights reserved

Item			D	ays fro	m Blacl	k layer ¹	L		P-\	/alue ²
	-18	-13	-10	-6	-3	3	8	SEM	Day	Day*Day
% DM	33.5	32.5	35.7	34.4	37.9	39.7	40.7	0.27	< 0.01	<0.01
Yield ³	23.8	24.4	24.9	24.7	29.4	28.0	29.6	0.19	< 0.01	0.98
Grain %	40.7	44.2	48.3	47.9	48.1	52.1	50.4	0.32	<0.01	< 0.01
NDF-Digestibility (plant) ⁴	51.8	51.1	47.5	45.1	41.6	42.0	43.3	0.43	< 0.01	<0.01
NDF-Digestibility (cob) ⁴	33.5	22.4	-	-	-	21.2	23.6	0.83	< 0.01	<0.01
Crude Protein	8.7	8.5	7.9	7.3	7.3	7.3	6.4	0.08	< 0.01	0.05
¹ Days from Black layer: -18= August 22; approximately September 9, 2013. ² Line P- value for the linear effect resp. ³ Silage Yield in DM metric ton/hectare ⁴ 28-h in situ digestibility as percentage ⁵ Protein as percentage of plant height c	-13= August onse to plant of plant on DM basis	:27; -10= A maturity (ugust 30; Quad= P-va	-6= Septen	1ber 3; -3= quadratic	Septembe	er 6; 3= Sep	tember 12; 8= Se ant maturity (da	eptember 17. Bla ys from Black lay Roy	ver) ver)

CCP 7 – Inoculant- Homofermenters

- Focus on fast acidification of silage by the increase of lactic acid concentration
- More efficient fermentation resulting on lower DM loss
- Reduce load of undesirable bacteria (ex. Clostridium)
- No antifungal properties
- Homofermentative and facultative heterofermentative lactic acid bacteria

Chemical composition of Alfalfa silage inoculated with homofermentative bacteria

	Control	FA+LC	FA+LP
pН	5 ^b	4.0ª	4.2ª
DM (%)	31.1	30.8	31.0
Lactic ac. (g/kg)	8.3ª	21.6 ^b	19.8 ^b
Butiric ac (g/kg)	17.2 ^b	8.6ª	8.2ª
Ammonia (g/kg of N)	108.5 ^b	50.2ª	45.3ª
DM loss (%)	6.1 ^b	4.1ª	3.6ª

© 2021 Chr. Hansen A/S. All rights reserved.

18

CCP 8 – Sealing

© 2021 Chr. Hansen A/S. All rights reserved

Good approach: tires mostly touch each other. But no protection against birds.

Better approach: gravel bags create a good barrier against air penetration under the plastic. Bird net prevents cover against damages by birds.

CHR HANSEN

25

CCP 8 – Sealing – Oxygen Barrier and Top spoilage losses

		Plastic film	
)B	PE	PVC	PVOH
.25	200	300	200
.21 ± 3.2	189 ± 4.2	280 ±6.1	192 ± 3.98
75 ± 1.6	722 ± 19.6	982 ±32.3	289 ± 5.1
	25 21 ± 3.2 5 ± 1.6	25 200 21 ± 3.2 189 ± 4.2 5 ± 1.6 722 ± 19.6	12 12 14 225 200 300 21±3.2 189±4.2 280±6.1 5±1.6 722±19.6 982±32.3

	UF FLORIDA
Hay = Forage preserved by drying above	e 85% DM
Baleage = Forage preserved by ferment with lesser DM concentration than hay (≤ greater than silage (≥ 30-35% DM)	ation in a bale ≤ 85% DM) but
Haylage = Forage preserved by fermenta DM concentration than hay (≤ 85% DM) silage (≥ 30-35% DM)	ation with lesser but greater than
Silage = Forage preserved by fermentati	on at ≤ 30-35%

<text><text><text><image>

Hay

UF FLORIDA

- Small increase in temperature is expected; however, large increases in temperature may be evidence of microbe fermentation
- Large increases in temperature results in DM and nutritive value losses in hay. In addition, it can cause spontaneous combustion

9

Storage D System	ry Matter (%)	Animal Refusal (%)	TOTAL (%)
Ground	28	22	50
Gravel	31	17	48
Tires	35	6	41
Rack	26	6	32
Rack with cov	er 12	2	14
Barn	2	1	3

Haylage

13

Haylage

UF FLORIDA

- Warm-season grasses have undesirable characteristics for successful preservation by fermentation
 - High water concentration
 - Decreased concentration of water-soluble carbohydrates (WSC)
 - The main WSC stores is starch, and LAB do not have the ability to ferment starch directly (McDonald et al. 1991)

14

Haylage

UF FLORIDA

- There is a misperception that the fermentation process would increase forage nutritive value
- Harvesting at the optimum regrowth interval is crucial to have baleage with acceptable quality

Weeks	Herbage Accumulation (kg/ha)	CP (%)	TDN (%)
2	1500	16	56
4	2100	13	57
6	3200	9	52
8	3600	7.5	48
10	4600	8.0	46

Haylage - DM concentration

STREET & COLUMN & THE			UF FLOR
	High DM	Low DM	<i>P</i> value
DM (%)	53	22	<0.01
рН	4.4	4.7	<0.01
Lactic acid (%)	4.3	2.8	<0.01
Acetic acid (%)	1.2	3.9	<0.01
Ammonia (%)	7.6	13.7	<0.01
	A.		

Haylage - Molasses

https://www.youtube.com/watch?v=9sTKjVxFmKQ&t=210s

Haylage - Molasses

UF FLORIDA

	Control	Molasses	<i>P</i> value
DM (%)	22	24	0.64
CP (%)	13.1	12.3	0.18
WSC (%)	0.4	1.0	<0.01
IVTD (%)	53	58	<0.01
pН	4.8	4.6	<0.01
Lactic acid (%)	2.7	3.6	<0.01
Acetic acid (%)	0.8	0.9	0.13
Ammonia (%)	8.3	9.8	0.15

22

Haylage - Propionic Acid UFINIONA
Haylage - Propionic Acid					
		10.0	1 51	_	UF FLORIDA
		Propi (% Gre	onic Acid en Forage)		SE
	0	0.5	1.0	0.5+ESA	
DM (%)	24	27	26	24	0.41
CP (%)	11.0	11.4	14.0	11.6	0.65
рН	5.1a	4.5b	4.3b	4.5b	0.14
Latic Acid (% DM)	0.1c	3.8b	5.3a	3.8b	0.60
Acetic Acid (% MS)	1.6a	0.8b	0.9b	0.9b	0.08
Propionic Acid (% DM)	0.5c	0.8bc	2.1a	0.9b	0.15
Butyric Acid (% DM)	4.5a	1.3b	0.1b	1.3b	0.06
Isobutyric Acid (% DM)	0.2a	0.05b	0.00b	0.05b	0.03
Ammonia (% N)	31.8a	16.6b	19.8b	19.8b	3.5

Economics							IVERSITY of
						UFIE	LORIDA
	Cost of Production	Dry matter	DM/bale	Custom Cost for harvesting and bailing	Custom Wrapping Cost	Total Cost	Cost per lb of DM
	\$ / 700 lb (green weight) bale	(%)	(lb)	\$ / 630 lb DM	\$ / 630 lb DM	\$ / 630 lb DM	\$
Нау	35	90	630	20		55	0.08
Haylage	35	45	315	40	10	85	0.13

Make your herd resilient to hidden challenges

Ben Saylor, PhD, PAS Dairy Technical Services Manager

Florida Ruminant Nutrition Symposium May 9 – 11, 2022 Gainesville, FL

Presentation Outline

- I. What does it mean to have a resilient herd?
- II. Hidden challenges to resilience
- III. The "3 Pillars" of a resilient animal
- IV. The multiple functionalities of *Bacillus* for improving herd resilience
- V. Effect of Bacillus supplementation on performance of dairy cattle
- VI. Questions

What does it mean to have a resilient herd?

- Resilience "the capacity to recover quickly from difficulties" (Oxford Languages)
- A resilient herd can achieve consistent, high-level performance in the face of various pressures
- Pressures:
 - Nutritional variation in feed quality, slug feeding, pathogens, mycotoxins
 - Environmental heat stress, cold stress, wind
 - Social over-crowding, pen moves, herd dynamics
 - Others?

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item>

5

The objective of this survey was to examine clostridia populations from concentrated dairy regions across the United States to identify regional similarities and differences.

Hidden Challenge #3 Intestinal permeability

- The intestinal epithelium (gut lining) serves a dual purpose:
 - Nutrient absorption
 - Protection from pathogens and toxins in the GIT
- Intestinal barrier integrity can be negatively affected by various stressors:
 - Heat stress
 - Feed restriction (off-feed events)
 - Pathogenic challenges (C. perfringens)
 - Inflammation

Horst et al. (2021) Kvidera et al. (2017) Zhang et al. (2013)

Hidden Challenge #3 Intestinal permeability

- When pathogens/toxins breach the intestinal barrier, immune cells and tissues react
- Lamina propria is home to estimated 70-80% of the immune system
- Immune response (INFLAMMATION)
 → Health issues/Productivity losses
- Proper barrier function is ESSENTIAL for optimal nutrient absorption and effective protection.

Horst et al. (2021) Kvidera et al. (2017) *Mucosal Immunol* **4,** 31–42 (2011)

Oklahoma State University

Study Overview

- 28 Holstein cows (primiparous and multiparous)
- Continuous lactation trial (25 weeks)
- CON vs. 2 billion CFU/hd/d of Bacillus (CERTILLUS)
- Cows housed together but fed individually using electronic feeders
- Herd had LOW pathogen challenge
- Measured effects of *Bacillus* supplementation on feeding behavior and performance

Oklahoma State University

Item	Bacillus Response	P-value
Feeding events	- 14.5%	< 0.05
Feed intake	- 13%	< 0.05
Feed efficiency	+ 16.9%	< 0.05

*No effect of Bacillus supplementation on BW/BCS

Oklahoma State University

Conclusions

- Bacillus supplementation (2 billion CFU/hd/d):
 - Increased milk fat % and ECM yield (P < 0.05)
 - Decreased feeding events and DMI (P < 0.05)
 - Improved efficiency (P < 0.05)
- We hypothesize that *Bacillus* supplementation influenced nutrient availability via rumen fermentation efficiency and/or nutrient absorption from the lower gut

41

New York Commercial Dairy

• 2,302 cows split into groups by lactation and MY and randomly

• Measured effects of Bacillus supplementation on performance and

Study Overview

• Randomized, controlled pen trial (135 d)

CON vs. 2 billion CFU/hd/d of Bacillus (CERTILLUS)

allocated to pens (90 lb. herd)

• Herd had LOW pathogen challenge

inflammatory markers in blood

New York Commercial Dairy

<u>Conclusions</u>

- Bacillus supplementation (2 billion CFU/hd/d):
 - Increased cumulative daily milk yield (P < 0.05)
 - Increased ECM milk yield (P < 0.05)
 - Reduced counts of total clostridia and C. perfringens
 - Decreased markers of inflammation (P < 0.05)

46

A resilient herd can achieve consistent, high-level performance in the face of various pressures Hidden challenges to resilience Pathogens coming from feed Sub-optimal rumen function Hindgut permeability

Conclusions

- Bacillus supplementation can increase herd resilience (and performance) by:
 - Controlling pathogens
 - Increasing populations of ruminal fibrolytic bacteria
 - Improving hindgut integrity

Sustainability is Here to Stay

Λ

Timescale	e also	needs	to b	e con	sidered
-----------	--------	-------	------	-------	---------

Land Use Type	2005 (1000 ha)	2018 (1000 ha)	Change (ha/y)
Urban Areas	71,037	74,904	297,000
Herbaceous Crops	1,221,098	1,235,250	1,089,000
Grassland	3,009,450	3,001,984	-571,000
Tree-covered Areas	4,977,582	4,976,059	-117,000
Mangroves	20,010	19,939	-5,500
Shrub-covered Areas	1,363,597	1,370,606	539,000
Aquatic/Flooded Areas	98,964	107,518	658,000
Snow and Glaciers	1,215,561	1,219,624	312,000
		UNFAO: http://www.fao.org/	faostat/en/#data/LC

Timescale a	also has practical	components	
Tubers	50		
Vegetables	300		
Fruit	200		
Dairy	250		
Meat (Red +	43	Can the agricultural system	
Poultry)		sustain this increase in	
Eggs	13	legume and put production	
Fish	28	leguine and nut production	
Legumes	50	globally?	
Nuts	25		
Oils	52		
Sweeteners	31		
¹ % Used refer production (F go for human consumed thi	s to the percentage of current AOStat, 2019) that would need to consumption if 10 billion people s average diet.		

Historical Success in Sustainability Improvements

- Improving efficiency of production systems contributes to enhanced environmental footprints
- Linking enhanced environmental footprints to social acceptance is a moving target

Emerging/Recirculating Challenges

Carbon dioxide (CO_2) concentrations within the atmosphere have increased rapidly in the past few decades

"Over the past 171 years, human activities have raised atmospheric CO2 concentrations by 48% above pre-industrial levels found in 1850. This is more than what had happened naturally over a 20,000 year period (from the Last Glacial Maximum to 1850, from 185 ppm to 280 ppm)."

Methane (CH_4) is the second most important anthropogenic GHG and has also increased atmospheric concentrations since the Industrial Revolution (up 150% since 1750)

Available at: https://www.globalcarbonproject.org/nitrousoxidebudget/20/files/GCP_NitrousOxideBudget_2020.pdf

11

Assumptions in Scenario to Reach Climate Neutrality for Beef

	2020		% change from 2020
Total non-dairy cattle, Jan. 1	79,766,700	79,549,600	-0.3%
Beef production, billion lbs.	27.1	31.2	+15%
Beef cattle enteric CH_4 , Tg CO_2e^1	175.5	136.0	-23%
Feedlot cattle enteric CH ₄ /d, g/hd	127	96	-24%
Beef cow enteric CH ₄ /d, g/d	262	204	-22%
Indirect GHG emissions, Tg CO2e ¹	101.4	72.3	-28%
Carbon footprint, kg CO ₂ e/kg beef carcass ^{1,2}	23.72	15.70	-34%
Total GHG emissions, Tg CO ₂ e ¹	291.3	222.4	-24%

33rd Annual Florida Ruminant Nutrition Symposium • May 9 to 11, 2022 • Gainesville, Florida