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Bonjour Madame, Bonjour Monsieur,

Lactanet was proud to host the 45th annual ICAR conference in conjunction with the Interbull meeting. The 
uncertainty around the worldwide management of COVID-19 regulations was challenging for the organizing 
committee, but three years after our last in-person event, we were delighted that 363 participants registered 
for the conference; 297 attended the meeting in person, while 66 participated virtually from home. Our guests, 
coming from 42 countries, had the opportunity to immerse themselves in Montréal, this vibrant, multicultural 
metropolis, the business hub of the French-speaking province of Québec, and also discover the quaint setting 
of «Vieux-Montréal» and its charming little streets. 

Share. Connect. Transform.

The topics, the relevance and the quality of the presentations demonstrated that we, as animal improvement 
experts and scientists, are taking action and looking for innovative and practical solutions to help the livestock 
sector face the upcoming environmental challenges. In total, 82 abstracts were submitted and distributed 
amongst eight themes. The «Advanced Analytics for Adding Value to Livestock Data» session was particularly 
popular, highlighting that artificial intelligence and data analytics are now integral to the dairy science and 
animal agriculture toolbox. 

Our planet is facing alarming climate change. The livestock sector has been called upon to make their 
contribution to limiting global warming and will need to adapt to the changing climate. International collaboration 
is vital for sharing and implementing global actions that will bring about the necessary changes to meet 
these challenges. Besides exploring solutions through research, the livestock sector urgently needs tools 
and information on how to select the next generation of animals to be more resilient and respond better to 
these challenges. The presentations on feed efficiency, data analytics and the use of sensors and advanced 
automated systems in our routine farm practices, showed us that we can develop solutions to help farm 
managers monitor and predict changes better, allowing them to optimize their operations. Beyond the primary 
objective of feeding people, animal agriculture now concerns itself with protecting our resources, using the 
right inputs, and connecting with consumers to meet their demands and expectations for nutritious, safe, 
affordable and sustainable food. Integrating multidisciplinary sciences is our challenge, along with being 
open to new opportunities that could transform our sector into the sustainable, efficient, and resilient one 
that will feed the world.  

Introduction
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The success of such a conference comes with the support of its valued partners

We would like to extend our heartfelt thanks and appreciation to the sponsors and exhibitors who supported 
the organization of the conference. Their generous support allowed the ICAR and Interbull communities to 
meet and share their knowledge and expertise to advance the livestock sector. We hope that the Montréal 
conference has brought about collaboration and business opportunities. Acknowledgement also goes out to 
the ICAR Secretariat team for their support and kind help with the general organization, and to the AgoraOpus3 
team, who supported us from the beginning of this great adventure to the final day. 

Finally, we would like to thank the Quebec Ministry of Agriculture, Fisheries and Food (MAPAQ) and the 
Canadian Agricultural Partnership funding program for their support.

Daniel Lefebvre 
Chief Operations Officer for Lactanet and President of ICAR

« Ce projet est financé en vertu de l’Accord Canada-Québec de mise en œuvre du Partenariat canadien pour 
l’agriculture. Ensemble, le gouvernement fédéral et le gouvernement du Québec ont investi 293 millions de 
dollars répartis sur une période de 5 ans, soit de 2018 à 2023. Cet accord appuie des initiatives stratégiques 
qui aideront les secteurs à croître, à innover et à prospérer».
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Update ICAR Feed and Gas Working Group: Guidelines 
and international collaboration for genetic evaluation

B. Gredler-Grandl1, C. Baes7, Y. de Haas1, R. Finocchiaro2, P. Garnsworthy3, N. 
Krattenmacher4, J. Lassen5, J. Pryce6 and R. Veerkamp1

1Wageningen University and Research, Animal Breeding and Genomics Centre, P.O. 
Box 338, 6700 AH Wageningen, The Netherlands 

Corresponding Author: birgit.gredler-grandl@wur.nl 
2Associazione Nazionale Allevatori della Razza Frisone, Brune e Jersey Italiana), 

Via Bergamo 292, 26100 Cremona, Italy 
3School of Biosciences, University of Nottingham, Sutton Bonington Campus, 

Loughborough LE12 5RD, United Kingdom 
4Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, 

Hermann-Rodewald-Str. 6, 24098 Kiel, Germany 
5VikingGenetics, Ebeltoftvej 16, 8960 Randers, Denmark

6School of Applied Systems Biology, La Trobe University, 
Bundoora, Victoria 3083, Australia 

7Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, 
University of Guelph, Guelph, ON N1G 2W1, Canada

Feed efficiency and methane emissions are important trait groups with regard to 
environmental impact, sustainability and efficiency of dairy cattle production. The 
ICAR Feed and Gas working group was established as a permanent ICAR working 
group in 2015 to support ICAR’s key role of providing guidelines on animal recording to 
support farmers in daily management decisions and to deliver validated information for 
genetic evaluations. The working group developed its first guidelines in 2020. Current 
priorities of the working group are to update and extend these guidelines and facilitate 
and evaluate possibilities for international genetic evaluation.

Keywords: Feed intake, methane emission, guidelines,, international collaboration, 
genetic evaluation.

The ICAR Feed and Gas working group was established as a permanent ICAR working 
group in 2015 to support ICAR’s key role of providing guidelines on animal recording 
to support farmers in daily management decisions and to deliver validated information 
for genetic evaluation. The main objectives of the group are:

•	 To update and extend guidelines for recording dry matter intake and methane 
emissions in cattle, sheep and goats worldwide.

•	 To provide a forum to ensure international exchange of knowledge and project 
results for feed intake and methane emission and coordinate international 
collaboration in research and development.

•	 To conduct and report periodic international surveys

Abstract

Introduction
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•	 To elaborate challenges and possibilities for international genetic evaluation for 
feed efficiency and methane emission.

The ICAR Feed and Gas Working Group developed guidelines for recording and genetic 
evaluation of individual feed intake and methane emissions in 2020. There is a need 
to clearly define and standardize recordings for feed intake and methane emissions. 
The group works on updates of the guidelines including results of new developments in 
recording techniques, trait definitions and trait evaluation for feed intake and methane 
emissions. For instance, precision livestock farming provides new solutions to record 
individual feed intake by using 3D cameras to get reliable estimates of individual daily 
feed intake (e.g. Lassen et al., 2018, Bezen et. al. 2020). This technique is applied by  
research and industry organisations and first results and experiences are available. In 
particular, for individual methane emissions data new research results became available 
in the last two years. Guidelines will be reviewed to account for evolving science in the 
field, and practical tips on how to edit raw data to produce a reliable phenotype record 
for management purposes or further genetic analyses. 

Several countries, including Australia, United States of America, Denmark, Norway, 
Finland, New Zealand, The Netherlands, United Kingdom, and Canada have 
implemented a genetic evaluation of feed efficiency in the recent years (summarized 
by e.g. Brito et al. 2020 and Stephansen et al., 2021). Those countries are invited to 
provide descriptions of national genetic evaluations for feed efficiency. This information 
is provided in the genetic evaluation form of Interbull (GE Form). Here, practical 
information about data editing steps and models used for genetic evaluations will be 
provided. In future, the GE forms will be incorporated in the newly developed PREP 
database by the Interbull Centre. The PREP database is a platform developed by the 
Interbull Centre to enable users to upload descriptive information regarding performance 
recording, national genetic evaluation systems, and publication policies. The Feed & 
Gas working group and the Interbull Centre will work together closely to set up the 
PREP database for feed efficiency traits.

The widespread use of genomic information has enabled selection for scarcely recorded 
traits such as individual feed intake and methane emissions. However, to achieve 
desirable reliabilities of genomic breeding values for feed efficiency traits that are 
developed from feed intake data, a large reference population of 30,000 animals is 
suggested (Brito et. al. 2021). de Haas et. al. (2021) estimated that recording individual 
methane emissions on an average of 150 cows across 100 farms for a minimum period 
of 2 years is needed to achieve a desirable reliability of genomic breeding values for 
methane. Phenotyping several thousands of individuals for difficult to measure traits is 
still challenging for single countries. International collaborations to share and exchange 
phenotypes are of extreme importance in this regard. Here, we mention three initiatives 
to share data across countries. 

The Global Dry Matter Initiative (gDMI, de Haas et. al. 2014) was the first research 
initiative to collate feed intake records across countries in an international reference 
population to estimate genomic breeding values for dry matter intake (DMI). Fifteen 
partners (both science and industry) from nine countries worldwide collaborated to form 
a reference population of around 10,000 phenotyped and 6,000 genotyped animals. 
The outcome of the collaboration showed clear benefits by improving reliabilities of 
genomic breeding values for DMI for most countries (de Haas et. al. 2015). 

Update guidelines

International 
collaboration for 
genetic evaluation
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The Resilient Dairy genome Project (RDGP; http://www.resilientdairy.ca) is a large-
scale applied research project funded by Genome Canada with the overall aim to 
provide genomic tools for selection of more resilient dairy cattle. The focus of RDGP 
is to build a large international reference population for feed efficiency and methane 
emission. The RDGP database currently holds 12,687 feed intake and 3,093 methane 
emission records of individual animals from seven partners. Within the RDGP all data 
are accessible by all partners to be used in their own national genetic evaluations.

Re-Livestock – Facilitating Innovations for Resilient Livestock Farming Systems is a 
large-scale international project to be started in September 2022 addressing challenges 
of the work programme HORIZON-CL6-2021-CLIMATE-01-06. The overall objective 
of Re-Livestock is to adopt and apply innovative practices across-scale (animal, herd/
farm, and sector) to reduce greenhouse gas emissions of livestock and increase 
resilience of the livestock sector. A work package is dedicated to investigating the 
contribution of breeding to a reduced impact of livestock on climate change mitigation 
and to the adaptation of livestock to climate change. Phenotypes and genotypes of 
around 13,000 cows (dairy and beef) will be merged across countries to perform multi-
trait genomic predictions.

Sharing and exchange of scarce and expensive-to-record phenotypes for genetic 
evaluation has been very successful within research projects (see initiatives mentioned 
above ) for feed efficiency (and methane emissions). In commercial applications, 
sharing data is still sensitive, and often data ownership issues and commercial interests 
hinder collaboration across countries. However, possibilities for the future are to apply 
methods, such as meta-analysis of national genomic evaluation results or the Interbull 
GMACE or SNP MACE methods (Jighli et. al., 2019) to increase the reliability of genomic 
predictions for feed efficiency traits and methane emissions.

Bezen, R., Y Edan, I. Halachmi 2020 Computer vision system for measuring 
individual cow feed intake using RGB-D camera and deep learning algorithms 
Computers and Electronics in Agriculture 172:105345

Brito, L. F., H. R. Oliveira, K. Houlahan, P. A. S. Fonseca, S. Lam, A. 
M. Butty, D. J. Seymour, G. Vargas, T. C. S. Chud, F. F. Silva, C. F. Baes, A. 
Cánovas, F. Miglior, and F. S. Schenkel. 2020. Genetic mechanisms underlying 
feed utilization and implementation of genomic selection for improved feed 
efficiency in dairy cattle. Can. J. Anim. Sci. 100:587–604. doi:10.1139/cjas-2019-
0193.

Brito, L. F., N. Bedere, F. Douhard, H. R. Oliveira, M. Arnal, F. 
Peñagaricano, A. P. Schinckel, C. F. Baes, and F. Miglior. 2021. Review: 
Genetic selection of high-yielding dairy cattle toward sustainable farming systems in 
a rapidly changing world. Animal. 100292. doi:10.1016/j.animal.2021.100292.

de Haas, Y., J.E. Pryce, M.P.L. Calus, I. Hulsegge, D.M. Spurlock, 
D. Berry, E. Wall, P. Løvendahl, K.A. Weigel, K. Macdonald, F. Miglior, N. 
Krattenmacher, R.F. Veerkamp. 2014. Genomic Predictions for Dry Matter Intake 
Using the International Reference Population of gDMI. Interbull Bulletin 48, 94-99.

de Haas, Y., J. E. Pryce, M. P. L. Calus, E. Wall, D. P. Berry, P. 
Løvendahl, N. Krattenmacher, F. Miglior, K. Weigel, D. Spurlock, K. A. 
Macdonald, B. Hulsegge, and R. F. Veerkamp. 2015. Genomic prediction of dry 
matter intake in dairy cattle from an international data set consisting of research 
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Measuring individual carbon dioxide emissions as a 
proxy for feed efficiency on dairy farms – preliminary 

results

I. Fodor1, N. Ogink2, F. de Jong3 and Y. de Haas1,4

1Animal Breeding and Genomics, Wageningen University and Research, P.O. Box 338, 
6700 AH Wageningen, The Netherlands 

Corresponding Author: istvan.fodor@wur.nl
2Livestock and Environment, Wageningen University and Research,  

P.O. Box 338, 6700 AH Wageningen, The Netherlands 
3Dairy Campus, Wageningen University and Research, Boksumerdyk 11, 

8912 CA Leeuwarden, The Netherlands 
4Current: Animal Health and Welfare, Wageningen University and Research, 

P.O. Box 338, 6700 AH Wageningen, The Netherlands

The costs and practical challenges of measuring individual feed efficiency on dairy farms 
have hampered its use both in farm management and genetic selection. The concept 
of residual carbon dioxide (RCO2) is similar to the index of residual feed intake (RFI), 
and used as a proxy, it could potentially enable ranking cows based on feed efficiency. 
In this study, we aimed to assess the relationship between RCO2 and RFI in mid-
lactation (115 to 175 days in milk), using data of 313 cow-per-treatment observations 
from five experiments with individual feed intake records. Carbon dioxide production 
was measured by GreenFeed units. Residual CO2 (kg/day) and RFI (kg of dry matter/
day) were estimated using a mixed model approach. Three cow groups (high/mid/low) 
of equal sizes were created both for RCO2 and RFI. Cows in the high-RCO2 group 
produced 1.92 kg/day (95% CI: 1.78 – 2.06, P < 0.0001) more carbon dioxide than 
their low-RCO2 herd mates. At the same time, high-RCO2 cows had 1.31 kg/day (95% 
CI: 0.95 – 1.67) higher RFI compared to their low-RCO2 counterparts (P<0.0001). The 
overall classification accuracy based on RCO2, using RFI as a reference, was 48.2%, 
however, inefficient (i.e. high RFI) cows could be identified with 59.0% accuracy. In 
conclusion, relevant differences were found between RCO2 groups in terms of feed 
efficiency. Therefore, routinely collecting individual carbon dioxide emissions seems 
to be a promising tool to record feed efficiency on a large scale.

Keywords: dairy cattle, feed efficiency, residual feed intake, carbon dioxide, GreenFeed.

Dairy production has to meet the increasing demand for milk and dairy products of the 
growing world population. Improved feed efficiency of dairy cows has large potential 
to reduce the environmental impact of this growth in multiple ways. First of all, land 
requirements of feed production can be decreased by 6.7% per cow via reducing feed 
intake by one standard deviation, at the same level of energy-corrected milk yield (Bell 
et al., 2012). Moreover, traditional selection for improved feed efficiency can decrease 
methane emissions per kg of fat- and protein corrected milk by 26% over a selection 
period of 10 years (de Haas et al., 2011). More feed efficient cows also produce less 
manure, thereby reducing the amount of methane and nitrous oxide released into the 
atmosphere (Connor, 2015). Farmers also benefit from improved feed efficiency through 
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reduced feed costs, which represent more than 50% of the total cost of milk production 
(European Commission, 2020). As a moderately heritable trait, feed efficiency could 
be improved by selective breeding, although, the costs and practical limitations of 
recording dry matter intake (DMI) limit selection (Seymour et al., 2019).

The concept of residual carbon dioxide (RCO2) is similar to the index of residual feed 
intake (RFI), and used as a proxy alone or in combination with other easily available 
parameters, it could potentially enable ranking cows based on feed efficiency (Huhtanen 
et al., 2021). The concept of RCO2 was originally developed using data from respiration 
chambers, but using sensors with highly repeatable carbon dioxide measurements 
(e.g. GreenFeed), the approach could be used on the farms, as well. In this study, we 
aimed to assess the relationship of RCO2 and RFI in mid-lactation on a dairy farm.

The data of 313 cow-per-treatment observations from five experiments, carried 
out at Dairy Campus of Wageningen University and Research (Leeuwarden, The 
Netherlands), were used in the analyses. Dry matter intake (kg/day), energy-corrected 
milk (kg/day), daily average body weight (kg), and carbon dioxide production (kg/day) 
were collected. Carbon dioxide production was measured by GreenFeed (C-Lock, 
Inc., Rapid City, SD) units. Dry matter intake from GreenFeed bait was not taken into 
account. Records between 115 and 175 days in milk were retained for the analyses, to 
minimize the possible effects of changes in energy balance, and because RFI measured 
in this period is highly correlated with the average RFI over the whole lactation (Martin 
et al., 2021).

Residual CO2 and RFI were obtained from mixed-effects models, accounting for 
energy-corrected milk and metabolic body weight (MBW, i.e. body weight0.75) as fixed 
effects, and treatment and experiment as random effects. Cows were classified into 
three equal-sized groups (high/mid/low, n = 104 – 105 each) based on RCO2 and RFI. 
The resulting groups were compared using linear models, followed by Tukey’s post 
hoc tests for pairwise comparisons.

The descriptive statistics of the parameters are shown in Table 1. The level of dry 
matter intake, energy-corrected milk production, and the body weight of cows were 
comparable to those of Huhtanen et al. (2021).

Materials and 
methods

Data

Statistical analysis

Results and 
discussion

Table 1. Descriptive statistics of the analysed parameters. 
 

Parameter Mean SD 
Dry matter intake (kg/day) 20.5 3.5 
Carbon dioxide production (kg/day) 13.7 1.3 
Energy-corrected milk (kg/day) 31.7 5.3 
Metabolic body weight (kg) 130.8 10.0 
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Significant differences in RCO2 were observed between RCO2 groups (Table 2). The 
low-RCO2  group produced on average 1.92 kg/day less carbon dioxide than the high-
RCO2  group, at the same level of energy-corrected milk yield and metabolic body weight 
(P < 0.0001). Feed efficiency, expressed in RFI, differed significantly between RCO2 
groups. The low-RCO2  group consumed 1.31 kg less feed per day than the high-RCO2  
group, at the same energy-corrected milk production and metabolic body weight (P < 
0.0001). Our results support the findings of Huhtanen et al. (2021), who found similar 
differences between low- and high-RCO2 groups both in terms of RCO2 and RFI.

Residual CO2 and RFI groups are cross-tabulated in Table 3. Overall, 48.2% of the 
cows were correctly classified based on RCO2, using RFI as reference, however, 
inefficient (i.e. high-RFI) cows could be identified with 59.0% accuracy. Inefficient 
cows were rarely misclassified as being efficient (16.2%), and vice versa (14.4%). 
This supports the potential of residual carbon dioxide to be used as a proxy for feed 
efficiency on dairy farms.

On the other hand, care should be taken when evaluating RCO2, because energy 
balance influences RCO2. For example, cows in negative energy balance mobilize 
body fat reserves to produce milk fat, which process does not generate carbon dioxide, 
consequently, these cows can be erroneously considered efficient. Therefore, carbon 
dioxide measurements should be performed in mid-lactation, when the probability of 
such misclassification is low (Huhtanen et al., 2021). Alternatively, changes in body 
condition or milk composition can be followed to obtain information on energy balance 
(Friggens et al., 2007; Thorup et al., 2018).

Table 2. Differences in residual carbon dioxide production (RCO2) and residual feed intake (RFI) between 
RCO2 groups. 
 

RCO2 RFI 

RCO2 group 
Difference 
(kg/day) 95% CI P-value 

Difference 
(kg/day) 95% CI P-value 

Low vs. high -1.92 -2.06 – -1.78 <0.0001 -1.31 -1.67 – -0.95 <0.0001 
Mid vs. high -1.02 -1.16 – -0.88 <0.0001 -0.89 -1.25 – -0.53 <0.0001 
Low vs. mid -0.90 -1.04 – -0.76 <0.0001 -0.42 -0.78 – -0.06 0.0168 

 
 
 
 
Table 3. Number (% in parentheses) of cows by residual carbon dioxide (RCO2) group, 
using residual feed intake (RFI) groups as reference. 
 

RCO2 group 
RFI group High (n = 105) Mid (n = 104) Low (n = 104) 
High (n = 105) 62 (59.0) 26 (24.8) 17 (16.2) 
Mid (n = 104) 28 (26.9) 39 (37.5) 37 (35.6) 
Low (n = 104) 15 (14.4) 39 (37.5) 50 (48.1) 
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We confirmed the utility of residual carbon dioxide as a proxy for feed efficiency on 
dairy farms. For future use in practice, carbon dioxide measurements should either 
be performed in mid-lactation, or preferably, energy balance of the animals should 
be estimated in parallel. Individual carbon dioxide measurements offer potential to 
distinguish efficient from inefficient cows on dairy farms, without the need to measure 
individual dry matter intake.
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Selecting dairy cattle that are efficient in utilizing feed is topical for many reasons 
discussed widely. Residual feed intake (RFI) is a trait that can capture the metabolic 
efficiency of a dairy cow in a broad sense including the abilities to digest feed, to have 
low energy loss through methane exhalation, and to use metabolizable energy for 
production. In 2020 the countries Denmark, Finland and Sweden have included the 
traits metabolic body weight and RFI into the Nordic Total Merit indices for Holstein, 
Nordic Red and Jersey dairy cattle. When adding more data from commercial farms 
to the genomic prediction for RFI, it was recognized that partial regression coefficient 
estimates may vary significantly across environments and parities. In this study we 
applied different approaches to predict breeding values for metabolic efficiency in 
Jersey dairy cows to assess the implications of using RFI breeding values for selection. 

The approaches were: 

A) 	similar to the current Nordic RFI evaluation where firstly dry matter intake (DMI) is 
regressed on energy sinks to get RFI observations that are subsequently used for 
predicting breeding values. 

B) 	was otherwise same as A) but instead of regressing DMI on energy sinks, DMI 
was regressed on expected DMI, where expected DMI values were calculated by 
utilizing energy requirement estimates from dairy nutrition studies. 

C) 	also otherwise same as A) but RFI observations were the difference between DMI 
and expected DMI. 

D) 	a random regression breeding value prediction model where DMI was regressed 
on expected DMI (ReFI). 

Estimated heritability was 0.14, 0.16, 0.10 and 0.10, and estimated additive genetic 
standard deviation was 0.89 kg, 1.02 kg, 0.95 kg and 5.4 % when applying approach 
A, B, C and D, respectively. Metabolic efficiency was unfavourable correlated with yield 
traits when applying A or B. In contrast, metabolic efficiency was favourable correlated 
with yield traits when applying C or D. We found that with approach A and B it was not 
possible to model the expected feed intake properly, which caused the discrepancy 
between the breeding values. Consequently, when selecting the genetically 10% best 
cows based on approach A, then these cows had only a 4% higher feed conversion 
efficiency compared to average cows, but when selection was based on approach D, 
then the cows had highest yield and 12 % higher feed conversion efficiency compared to 
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average cows. Results indicate that using RFI as a trait to improve metabolic efficiency 
in dairy cows should be reconsidered if the modelling of partial regression coefficients 
for the energy sinks is not satisfying.

Keywords: Feed efficiency, residual feed intake, regression on expected feed intake, 
Jersey.

Improving resources efficiency of dairy cows not only by selecting for the traits commonly 
included in total merit indices but preferable by also including efficiency traits into total 
merit indices has been studied intensively. Pryce et al. (2015) proposed to include a 
subindex that accounts for feed saved due to lower feed requirement for maintenance 
and higher metabolic efficiency of the cow. In this regard, the metabolic efficiency of a 
cow is understood in a broad sense that includes the abilities to digest feed, to have 
low energy loss through methane exhalation and to use metabolizable energy for the 
different energy pathways, and all that can be modelled by residual feed intake (RFI) 
(Koch et al., 1963). For breeding value estimation purposes, it is common that RFI 
observations are modelled from the same data that is used for estimating the breeding 
values. Therefore, dry matter intake (DMI) is modelled by partial regression analyses 
and obtained deviations from the expectations, i.e. the residuals, are used subsequently 
as observations for estimating RFI breeding values (Berry and Crowley, 2013). 
Alternatively, RFI can be described by a linear function of feed intake and energy sink 
traits breeding values from a multivariate analysis (Kennedy et al., 1993), which also 
can be tailored to complex multiple-trait random regression models (Islam et al., 2020).

In 2020 Nordic Cattle Genetic Evaluation (NAV) has included a Saved feed index 
into the Nordic Total Merit for selecting Holstein, Nordic Red and Jersey dairy cattle 
in Denmark, Finland and Sweden (Stephansen et al., 2021). The Saved feed index 
considers the animal’s genomic breeding value for metabolic body weight (MBW) to 
account for the feed needed for maintenance, and the animal’s genomic breeding value 
for RFI to accounts for the metabolic efficiency of the cow. Research on improving 
genomic predictions for both traits has been continued with the aim to increase the 
reliabilities of the genomic breeding values. For the MBW evaluation carcass weight 
will be included as correlated trait and for RFI more data from commercial herds with 
the CFIT 3D camera system (Lassen et al., 2018) are used. In this attempt, we have 
recognized that partial regression coefficient estimates from the first step of the RFI 
evaluation may vary significantly across environments and parities. Furthermore, 
partial regression coefficients also differed from regression coefficients developed in 
nutrition studies (Agnew et al., 2003). This was observed both on research farm data 
and CFIT data. In an earlier study (Mehtiö et al., 2018) it was also found that the partial 
regression coefficients, when estimated from the data, may deviate significantly from 
those obtained in nutrition studies. Moreover, we noticed that the varying of partial 
regression coefficient estimates has a noteworthy effect on RFI breeding values. 
Therefore, a better understanding of the implications of using RFI breeding values for 
genetic improvement of dairy cattle is needed.

An alternative approach (Lidauer et al., 2022) that allows modelling regression 
coefficients to be close to their biological expectations, is regression on feed intake 
(ReFI), where DMI is regressed on expected DMI (eDMI). For this approach, eDMI is 
calculated by using energy requirement (ER) coefficients that are estimated in nutrition 
studies (e.g. Agnew et al., 2003) rather than estimating partial regression coefficients 
simultaneously while estimating breeding values for RFI. The aim of this study was to 
contrast estimated breeding values (EBV) obtained from a RFI model like that applied 
by NAV with those obtained from the ReFI model. To dissect differences between 
the two approaches, we modelled metabolic efficiency by two additional approaches 
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and estimated the genetic correlations between these metabolic efficiency traits and 
the production traits milk yield (MY), fat yield (FY), and protein yield (PY). We also 
contrasted phenotypes of selected superior cows, when selection is based on the four 
alternative EBV.

For this study Jersey feed efficiency data were extracted from the NAV genetic 
evaluation. The data were collected on four herds between January 2019 and December 
2021 and included 46,822 records up to the sixth parity of 1,211 Jersey cows (Table 
1). Weekly averages of daily DMI and body weight (BW) predictions were attained by 
the CFIT 3D camera system (Lassen et al., 2018). The BW predictions were used to 
calculate daily MBW and daily BW change (DBW). The milk yield data were from the 
official milk recording scheme and were used to form for each intake record an energy 
corrected milk (ECM), MY, FY and PY observation. All data was cleaned from outliers.

Material and 
methods

Data

The RFI approach and ReFI approach are conceptually rather different. Despite that 
the ReFI approach utilizes coefficients from ER studies, also the applied model is rather 
different. To better understand the source of differences in EBV from both approaches, 
we also included two intermediate approaches.

The approach involved two steps. In a first step DMI was regressed on energy sinks 
to get RFI observations:

DMI = c1 × A + c2 × A2 + LP + LYS + HYS + γ1 × ECM + γ2 × MBW + γ3 × ∆BW + rfi (1)

where c1 and c2 are regression coefficients to model the calving age (A) effect of the 
cow; LP is lactation month nested within first and later parities; LYS is lactation period 
nested within year and season; HYS is the herd × year × season contemporary effect; 
γ1, γ2 and γ3 are the coefficients for the partial regressions on the energy sinks ECM, 
MBW and ∆BW, respectively that are nested within LP classes; and rfi is the model 
residual and was regarded as a raw RFI observations. The raw rfi observations were 
adjusted for heterogeneous variance to accommodate a single trait evaluation in the 

Approach A: Currently 
used residual feed intake 
model (RFI_A)

Table 1. Descriptive statistics for dry matter intake (DMI), metabolic body weight (MBW), 
energy corrected milk (ECM), milk yield (MY), fat yield (FY) and protein yield (PY) given for 
1,211 Jersey cows by first (1) and later (2+) parities. 
 

Parity N  DMI MBW ECM MY FY PY 
1 18,221 Mean 21.3 95.0 28.9 22.0 1.3 1.0 
  Std 3.2 5.5 5.6 4.9 0.3 0.2 
         
2+ 28,588 Mean 24.5 103.3 37.1 28.5 1.7 1.2 
  Std 3.3 5.1 6.1 5.6 0.3 0.2 
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second step (Stephansen et al., 2021). The final RFI observations used in the second 
step were formed by adding to the adjusted rfi observations the LYS and HYS solutions 
from model (1) to avoid that genetic variation would be lost in step 1. For the second 
step the applied breeding value estimation model was:

RFI = LYS + HYS + pe + a + e					      	  (2)

where LYS and HYS are same fixed effects as described for model (1); pe is the cow’s 
random permanent environmental effect; a is the random additive genetic animal effect; 
and e is the random residual.

The approach was otherwise identically with approach A, but the model for the first 
step was modified:

DMI = c1 × A + c2 × A2 + LP + LYS + HYS + φ × eDMI + rfi, 			    (3)

where all effects in the model are the same as in model (1) but the model included 
instead of partial regressions on energy sinks a regression on eDMI, where φ is a 
regression coefficient nested within LP classes. Calculating for each record the eDMI 
value was done by firstly calculating ER:

ER = 4.81 × ECM + 0.603 × MBW – 27.6 × BW_Loss + 38.3 × BW_Gain	  (5)

where the coefficients are metabolizable ER in mega joules for producing 1 kg ECM, 
maintaining 1 kg0.75 MBW, utilizing energy from 1 kg BW loss, and gaining 1 kg BW. 
The applied coefficients were the averages of the estimates reported by Agnew et al. 
(2003). Then, ER values were scaled so, that the obtained eDMI covariables should 
yield ö regression coefficient estimates that have on average an expectation of unity:

eDMI = ER × mean(DMI) / mean(ER). 	  				     (6)

Again, the approach was otherwise identically with approach A, but a raw RFI 
observation was calculated as a difference:

rfi = DMI – eDMI								        (7)

Approach B: Residual 
feed intake with 
regression on feed 
requirement (RFI_B).

Approach C: 
Requirement residual 
feed intake (RFI_C).
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This approach only requires modelling of DMI by a random regression model that 
regresses DMI on eDMI:

DMI = β × eDMI + η × eDMI + y × eDMI + á × eDMI + e			    (8)

where â is a fixed regression coefficient nested within herd × year × parity classes, 
h is a random regression coefficient nested within herd × year × month classes,  is a 
random regression coefficient nested within permanent environmental classes, á is 
a random regression coefficient nested within additive genetic animal classes, and e 
is the random residual.

The relationships between animals were modelled by setting up the numerator 
relationship matrix (A). Therefore, the pedigree of all cows with observations was 
pruned including five generations at most, which resulted 4,223 informative animals in 
the pedigree. Univariate analyses were carried out to estimate variance components for 
the four metabolic efficiency approaches by applying model (2) for the RFI approaches 
(A, B and C) and model (8) for the ReFI approach (D). The genetic correlations 
between the four metabolic efficiency traits and the production traits MY, FY and PY 
were estimated by multivariate analyses using as observations yield deviations (YD) 
and applying a multiple-trait repeatability animal model that included a mean and the 
random permanent environmental, random animal and random residual effects. The YD 
observations were obtained by firstly carrying out a multivariate analysis for the yield 
traits and univariate analyses for metabolic efficiency by the approaches A, B, C and D, 
and followed by summing solutions for the permanent environmental, additive genetic, 
and residual effects. For the genetic correlation study only first parity data was used.

All data were used for the prediction of EBV based on model (2) for the RFI approaches 
(A, B and C) and model (8) for the ReFI approach (D). Cows with at least 5 observations 
in the first parity were ranked alternatively based on the four different sets of EBV, and 
the first parity phenotypic means of the genetically 10 % best cows were contrasted 
against the phenotypic means of all cows.

The estimated heritability was 0.14, 0.16, 0.10 and 0.10, and the estimated additive 
genetic standard deviation was 0.89 kg, 1.02 kg, 0.95 kg and 5.4 % for RFI approach 
A, B, C and ReFI approach, respectively. Considering that the average DMI was 
23.2 kg, the genetic standard deviations estimated by approach A, B and C can be 
expressed in efficiency percentages to make it comparable to ReFI. Thus, the genetic 
standard deviations for RFI by approach A, B, and C relate to 3.8 %, 4.1 % and 5.2 
%, respectively, which all are lower than that one estimated by ReFI. Even estimated 
genetic variance was higher for RFI_C and ReFI, the heritability was lower. This was 
because RFI_C and ReFI resulted higher residual variance estimates compared to 
those from RFI_A and RFI_B.

The genetic correlation between metabolic efficiency by the four approaches and 
yield traits are given in Table 2. For RFI_A and RFI_B we obtained moderate positive 
(unfavourable) correlations with the yield traits. This was unexpected, because RFI 
observations are corrected for yield. In contrast, for RFI_C and ReFI we obtained 

Approach D: Regression 
on feed intake (ReFI).

Estimation of 
variance components 
and breeding values

Results and 
discussion

Variance component 
estimates
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moderate negative correlations with FY and PY, which indicates a favourable genetic 
association between metabolic efficiency and milk content traits, in particular with fat %.

The differences in the estimated genetic correlations between the yield traits and 
metabolic efficiency by the four approaches are a result on how the expected DMI is 
modelled. For RFI_A the expectations were obtained by the estimated partial regression 
coefficients for the three energy sink traits ECM, MBW and DBW (Table 3). For RFI_B 
only one single regression coefficient (ö) was fit for each class, instead of fitting a 
partial regression coefficient triplet. For approach RFI_C no regression coefficients 
were estimated, and for the ReFI approach regression coefficients (â) were estimated 
within a different set of classes because regression coefficients also modelled the 
contemporary group effect.

The mean estimates given in Table 3 indicate that there is a discrepancy between the 
estimated partial regression coefficients and the coefficients reported in ER studies (e.g. 
Agnew et al., 2003). Considering that ER regression coefficients applied in equation (5) 
are sufficiently close to the ER of the cows in this study, and that the average energy 
density of the feed was 9.80 mega joule / kg DMI, then it can be expected that on 
average a cow would have required 0.49 kg, 0.062 kg, and 3.91 kg DMI to produce 
1 kg ECM, maintain 1 kg0.75 MBW and increase BW by 1 kg, respectively. However, 
the partial regression coefficient estimates for ECM were on average 37% and 63% 
lower in first and later parity, respectively. And the partial regression coefficients for 
MBW were 2.6 and 3.2 times larger in first and later parity, respectively. Consequently, 
for high yielding cows the modelled feed intake expectations were far too low and 
such cows received a positive RFI observation, which explains the unfavourable 
correlation between RFI_A and yield traits. Also the regression coefficients for RFI_B 
where significantly lower than the expected value of 1.0. Therefore, similarly to RFI_A, 
for high producing cows the modelled feed intake expectations were too low, which 

Regression 
coefficients for 
modelling feed intake 
expectations

Table 2. Genetic correlations between metabolic efficiency by approach A 
(RFI_A), B (RFI_B), C (RFI_C) and D (ReFI), and the yield traits milk (MY), fat 
yield (FY) and protein yield (PY). 
 

Yield trait RFI_A RFI_B RFI_C ReFI 
MY 0.47 0.43 -0.01 0.02 
FY 0.17 0.24 -0.20 -0.28 
PY 0.31 0.30 -0.16 -0.10 

 
 
 

Table 3. Means of regression coefficient estimates across lactation month classes 
(RFI_A, RFI_B) and across herd × year classes (ReFI) by first (1) and later (2+) 
parities. Energy sink traits: energy corrected milk (ECM), metabolic body weight 
(MBW), body weight change (ΔBW), and expected dry matter intake (eDMI). 
 

  RFI_A   RFI_B  ReFI 
 ECM MBW ΔBW  eDMI  eDMI 
Parity γ1 γ2 γ3  φ  β 
1 0.307 0.159 -0.277  0.463  1.036 
2+ 0.179 0.196 -0.244  0.322  1.013 
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resulted also in unfavourable correlations with the yield traits. For the ReFI approach 
the estimated regression coefficients were on average close to the expected value of 
1.0 (Table 3), which supports that the estimated favourable correlations with yield traits 
might be closer to the true genetic association between metabolic efficiency and yield. 
The finding for the ReFI approach were supported by the RFI_C approach, which did 
not require to estimate regression coefficients from the data.

The four different sets of EBV for metabolic efficiency differed considerably. We 
obtained a correlation between EBV from the approach A with EBV from approaches 
B, C and D of 0.92, 0.69 and 0.61, respectively. Consequently, groups of genetically 
superior cows were rather different when selecting based on the different sets of 
EBV. In Table 4 the first parity phenotypic means of the four different cow groups are 
tabulated against the first parity phenotypic means of all cows with at least five first 
parity observations.

When 10 % best cows were selected based on RFI_A and RFI_B then they had lowest 
DMI but also lower yields compared to average cows. In contrast, when 10 % best 
cows were selected based on ReFI, then cows had lower DMI as average cows but 
highest yields. Consequently, when selecting based on RFI_A, then the feed conversion 
efficiency of the 10 % best cows was only 4 % higher than that one of average cows, 
but the feed conversion efficiency was 12% higher when selection was based on ReFI.

In this study we compared different approaches to predict breeding values for 
metabolic efficiency in dairy cows. With the currently used approach that models 
metabolic efficiency by a residual feed intake model, genetically superior cows were 

Phenotypes of 
genetically superior 
cows based on four 
alternative breeding 
values

only moderately better in feed efficiency but had lower production. In contrast, when 
applying an alternative approach, where dry matter intake is regressed on expected dry 
matter intake, then superior cows were clearly more efficient and had also significantly 
higher production. The poor performance of the residual feed intake model in this study 
was due to the inability of the model to estimate the partial regression coefficients for 
the energy sinks properly.

Conclusion

Table 4. Phenotypic means of first parity dry matter intake (DMI), metabolic body weight 
(MBW), energy corrected milk (ECM), milk yield (MY), fat yield (FY), protein yield (PY) and 
feed conversion efficiency (FCE=ECM/DMI) for all cows with at least 5 observations and for 
10% best cows with at least 5 observations selected based on EBV estimated by four 
Approaches. Approach A (RFI_A), B (RFI_B), C (RFI_C) and D (ReFI). 
 

All cows  DMI MBW ECM MY FY PY FCE 
10% best cow Method 21.2 94.9 28.7 21.8 1.30 0.946 1.35 
 RFI_A 18.6 94.7 26.3 18.8 1.22 0.860 1.41 
 RFI_B 18.4 92.8 25.3 18.3 1.17 0.833 1.38 
 RFI3_C 19.9 93.1 29.1 21.5 1.34 0.966 1.46 
 ReFI 19.8 93.9 29.8 22.0 1.37 0.982 1.51 
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Our objective was to demonstrate that the ongoing recording of methane of individual 
cows on 100 dairy farms in the Netherlands will provide meaningful breeding values 
for methane mitigation. Previously we conducted a power calculation that used the 
available literature, which predicted that recording on 100 dairy farms, 15,000 cows, 
and two years of recording, would provide a high enough reliability of prediction, to allow 
for practical direct selection for lower methane emissions. To determine what reduction 
in methane could be achieved by 2050, a methane trait with genomic prediction was 
included in the Dutch national selection index, showing that methane intensity could be 
reduced by between 14% and 24% (depending on the strategy). To be able to achieve 
these gains, a large scale phenotyping strategy needed to be implemented. We have 
commissioned 100 infrared spectrometry methane sensors, or ‘sniffers’, to be used 
to fulfil the data need. To date, 15 sensors have been installed, and at the time of 
writing, installation of the remaining sensors is ongoing and will be completed in the 
second half of 2022. The benefit of using sniffers is that it allows for a high throughput 
of cows and continuous recording for extended periods of time. With the data already 
available we have calculated traits referred to as mean visit, daily, and weekly methane 
concentration (ppm). These methane concentration traits are moderately heritable (0.13 
to 0.32) and repeatable (0.30 to 0.68). The downside of using sniffers is that it records 
the methane concentration and not the methane production (g/day). We have also 
temporarily installed GreenFeeds on 16 farms (four overlapping with sniffers). There 
are 1,800 cows with sniffer recorded weekly methane concentration, and 822 cows 
with GreenFeed recorded weekly methane production (184 cows with both). All of the 
cows are linked via the pedigree and there are 1,655 which are also genotyped. A 
preliminary genetic correlation between Sniffer methane concentration and GreenFeed 
methane production is high at 0.71, indicating that selection for methane concentration 
as recorded with sniffers will in fact reduce methane emissions. We have learned a 
number of valuable lessons in the large scale rollout of methane sniffers which will be 
useful for future industry application. Most importantly, is that suitably reliable genomic 
breeding values for methane are closer to being a reality than ever before.

Keywords: Greenhouse gas, environment, dairy cows, ruminant, CH4, CO2 
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The Dutch government has committed to reducing greenhouse gas emissions by 55% 
in 2030 compared to year 1990, and by 2050 to be carbon neutral (Communication 
from the Directorate-General for Climate and Energy, 2022). The Dutch dairy industry 
is a large contributor to greenhouse gases in the Netherlands (Van der Maas et al., 
2009). We have been investigating how to use animal breeding as a methane mitigation 
tool, to help achieve these goals and reduce the environmental impact of the Dutch 
dairy industry.

To achieve a reduction in methane with breeding, accurate breeding values are required. 
To obtain accurate breeding values large scale recording of methane is needed. The 
use of various infrared spectrometry sensors have been used in various studies to 
estimate genetic parameters of methane (Lassen and Difford, 2020). Collectively 
these sensors have been referred to as ‘sniffers’. Sniffers offer a comparatively cheap 
method of phenotyping a large number of commercial cows (Madsen et al., 2010; 
Garnsworthy et al., 2019).

We have reviewed our decision process in selecting sniffers as the most suitable method 
of large scale recording and how we determined that 100 farms would need to have a 
sniffer installation, to obtain reliable genomic breeding values (de Haas et al., 2021). 
We summarise the parameter estimates obtained from large scale methane recording 
with sniffers, including the trait definitions and genetic correlations with methane traits 
measured with GreenFeed (C-lock Inc. Rapid City, SD, US (Zimmerman, 2011)). Then 
using the current knowledge and lessons learned during the upscaling to 100 farms, 
we outline the next steps towards genomic breeding values and implementation in 
breeding programs. This demonstrates the progress made towards accomplishing 
our objective, of large scale phenotyping with sniffers in the Netherlands to provide 
meaningful breeding values for methane mitigation.

Wageningen University and Research has ongoing research on the application 
of breeding as a strategy for methane mitigation. The results presented here are 
summaries of the work done during the projects Climate Envelope (The Klimaatenvelop 
is supported by the Dutch Ministry of Agriculture, Nature and Food quality), and 
Climate Smart Cattle Breeding (Public-private partnership with the cooperative cattle 
improvement organization CRV, Friesland Campina, and the Dutch government). We 
have focused only on recording and outcomes of ongoing projects directly related to 
animal breeding.

We wanted to determine what the current genetic trends are for methane production (g/
day) and methane intensity (g/kg), and what theoretical gain could be made if methane 
was added to the Dutch national breeding goal. To this end, we adapted a selection 
index that included 15 traits that are included in the current breeding goal. We tested 
various goals and economic weights placed on methane with or without genomic 
prediction. Concurrently a power analysis was performed to determine a recording 
strategy that would achieve a high enough reliability of genomic prediction that would 
facilitate the selection and genetic gain seen in the selection index. Published genetic 
parameters and preliminary data collected during the Climate Envelope were used as 
inputs for the selection index and power analysis. For full details on the selection index 
and power analysis see de Haas et al. (2021). 
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Previously 15 sniffers were purchased and installed on 14 commercial dairy farms 
across the Netherlands (WD-WUR v1.0, manufactured by Carltech BV), between 
March 2019 and September 2020. The sniffers were installed with the air intake 
located in the feeding bin of automated milking robots (AMS), where they measured 
methane concentration (0 to 2,000 ppm) and carbon dioxide concentration (0 to 
10,000 ppm) continuously, for between 64 and 436 days (depending on farm). During 
the data collection and analysis, several practical and technical lessons were learnt. 
These lessons were used to develop a second generation of sniffers. Installation of 
an additional 90 units has begun using the new design. Methane data has continued 
to be collected after September 2020 and is expanding as new sensors are installed. 
The data collected from the sniffers is uploaded in near real time to a Microsoft Azure 
data cloud.

Using long-term and continuous recording with sniffers can be used to defined methane 
traits, but the raw sniffer requires processing for this purpose. A method similar to 
Garnsworthy et al. (2012) was used to match cow visits to the AMS with peaks in 
methane concentration. The data was then processed to remove background levels 
of methane and carbon dioxide and correct for cow behaviour. Across the farms there 
were 1,746 Holstein Friesian cows that visited an AMS a total of 308,968 times, during 
each milking event the methane concentration was measured.

The main considerations included, calculation methods (mean, median, log, ratio) and 
the period used per record (visit or weekly). Based on various combinations of trait 
definitions we wanted to estimate heritability and repeatability of various methane traits 
defined from the largest data set of long-term repeated cow records. All cows were 
linked via pedigree and 1,611 were genotyped. Parameter estimates were made using 
univariate animal models, that included repeated records, with ASReml 4.2 (Gilmour 
et al., 2015). The heritabilities and repeatabilities were used to calculate reliability of 
the breeding values and determine the number of records per daughter that would be 
needed for implementation. For full details on matching AMS and sniffer data, data 
processing, parameter estimations, and determining reliability of estimated breeding 
values see van Breukelen et al. (2022a).

The application of sniffers for genetic selection is still in a development stage, and 
is why we explored the genetic relationship with traits recorded with GreenFeed, as 
GreenFeed are considered the gold standard for on-farm recording of individual cow 
methane. Since the univariate analysis with the sniffers, data collection has been 
ongoing and is expanding to measure methane on 100 dairy farms. There have also 
been GreenFeed units installed temporarily on 16 farms (four overlapping with sniffers). 
At the time of this analysis, there were 1,800 cows with sniffer recorded daily methane 
concentration, and 822 cows with GreenFeed recorded daily methane production (g/
day) (184 cows with both). All of the cows are linked via the pedigree and there are 
1,655 which are also genotyped. Bivariate animal models in ASReml 4.2 (Gilmour et 
al., 2015) were used to estimate the genetic parameters for methane concentration 
(ppm recorded by sniffers) and methane production (g/day recorded by GreenFeed).

Developing a sniffer and 
installation

Defining methane 
traits from sniffer 
recorded methane

Sniffer and 
GreenFeed methane 
traits
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Based on the current Dutch selection index, the genetic trend for methane production is 
unfavourable with a genetic trend of increasing methane by 5.79 g/day per generation. 
However, as the current index selects for traits that improve production efficiency, 
methane intensity will decrease by 13%. With active selection on lowering methane 
production and utilizing genomic prediction, the genetic trend for methane production 
can be decreased by 5.79 g/day, will still result in increasing milk production, and lower 
methane intensity by 24%. This was a clear justification for us to develop a recording 
scheme that will allow us achieve these theoretical improvements. We found, to achieve 
a desired reliability of genomic prediction of 0.40 within two years of recording, we 
would need to record methane on 100 farms with an average herd size of 150 cows 
(15,000 total cows). For full results of the selection index and power analysis see de 
Haas et al., (2021).

During the data collection and analysis of the first 15 sniffers, we identified several 
technical requirements that should be considered when developing new sniffers. Due 
to the challenging environment of dairy barns and the sensitivity of methane sensors, 
the housing containing the sensor should be dust resistant, operate within a wide range 
of ambient temperatures and humidity, and exclude gases that can interfere within 
the measured wavelength such as water. Methane sensors can have a large range of 
detection limits, while most measurements are within 200 to 2,000 ppm, consider that 
the error should be minimized within the most common recording ranges (measurements 
closer to the mean per visit should be the most accurate). Some methane sensors 
are prone to drifting away from the calibration curve, limiting factors that affect the 
methane sensor can help to minimize the drift, regular checks of the incoming data 
can help identify when a sensor drifts and requires recalibration. If this is ignored it 
can limit the potential analysis, for example traits that use a ratio with carbon dioxide 
were limited because the methane sensor drifted and the carbon dioxide sensor did 
not drift. The methane data recorded in these projects is uploaded in near real time to 
a data cloud infrastructure, however there can be issues with communication due to 
interference with farm equipment or with poor connections via the telecommunication 
infrastructure, having built-in data storage options are a good redundancy. With these 
lessons learned, 90 new sniffers were purchased that implement these requirements. 
However, they are still in development and with limitations in global supply chains the 
full scale installation was inhibited. The installation on 100 farms is expected to be 
completed in 2022, in the meantime this still remains the largest and longest methane 
recording dataset on individual cows for genetic evaluations.

We have found that mean methane per visit is heritable (0.13 + 0.01) and repeatable 
(0.30 + 0.01), but with lower estimates compared to weekly methane (0.32 + 0.01 
and 0.68 + 0.01, respectively). However this has limited effect for the reliabilities of 
the breeding values. To achieve a reliability of 0.50, 25 mean methane records on 10 
daughters is needed. For the full results of on the genetic parameters estimated with 
sniffers see van Breukelen et al. (2022a). The estimated heritabilities and repeatabilities, 
were within the parameter space of the estimates used in the selection index and power 
analysis, indicating the large scale methane recording currently in progress, will make 
the goal of providing meaningful breeding values for methane mitigation possible. 

The previous parameter estimates were for methane concentration traits, while the 
desired trait change is placed on methane production. The preliminary results with 
the GreenFeed have been very encouraging. The heritability (0.20) and repeatability 
(0.34) for methane production are within the same parameter space as the sniffers 
(van Breukelen et al. 2022b, accepted). Importantly the genetic correlation between 
GreenFeed and sniffer methane is high and positive (0.71). This indicates that 
selection for lower methane concentration will reduce methane production and be a 
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useful methane mitigation option. This has given us confidence that by the end of the 
project there will be the required data for reliable breeding values for a methane trait 
that can be selected. 

The work so far has mostly utilized data already collected. As the dataset from the full 
100 farms becomes available there are several research objectives to be completed. 
Genetic and phenotypic correlations will be estimated with all of the traits included in the 
current national Dutch breeding goal. Subsequently a selection index that incorporates 
the new methane traits will be developed. Reliable breeding values for the methane 
trait to be included in the selection index need to be estimated. In the meantime, the full 
100 sniffers need to be installed, the data processing is being refined, and methods to 
improve the accuracy of the methane traits are being explored such as standardising 
the methane measurements across devices and including the microbiome population 
as a random effect.

Animal breeding is a promising method of methane mitigation that can be used to help 
reach greenhouse gas targets. Before breeding strategies can be implemented, there 
needs to be enough data to reliably predict breeding values. Long-term measuring with 
sniffers is a viable method of data collection. Results so far are encouraging and the 
traits developed could be used for selection purposes. With the expansion of sniffers 
to 100 farms we believe meaningful breeding values for methane mitigation will be 
available in the relatively near future.

The research leading to these results was part of the Climate Approach Project, funded 
by the Dutch Ministry for Agriculture, Nature and Food Quality (LNV, The Hague; 
project number BO-53-003). This work was supported by the TKI Agri and Food 
project LWV19155 (Wageningen, the Netherlands) and the partners CRV (Arnhem, 
the Netherlands) and FrieslandCampina (Amersfoort, the Netherlands). The authors 
gratefully acknowledge the farmers for participating in this research.
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The objective of this study was to describe the collection protocol for growth, feed 
efficiency and greenhouse gas (GHG) emissions in young Italian Holstein bulls. The 
phenotypes will be used in genetic evaluations for the reduction of environmental 
impact in Italian Holstein.

The animals involved in this study were young Italian Holstein bulls undergoing own 
performance test at the Genetic Center (GC) of Italian National Breeders Association 
for the Holstein, Brown and Jersey dairy cattle breeds (ANAFIBJ). Phenotypic data 
was provided for on 218 Holstein bulls between the age of 171 and 541 days. All bulls 
were genotyped using various SNP chips resulting in 69,127 SNP after imputation. 

The phenotypic data can be summarized in three groups: 

1.	 a group of traits describing growth and condition of the animal;

2.	 a dataset derived from measures taken with the Roughage Intake Control system 
(RIC; Hokofarm Group, Marknesse, The Netherlands) and 

3. 	dataset derived from measures taken using the GreenFeed (C Lock Inc., Rapid 
City, SD, USA).

The group A included measures of body growth taken using electronic scales and 
stadiometers operated by qualified personnel. These included body weight (WEI), body 
condition score (BCS), heart girth (HG) and height (HEI). Group B included single-visit 
measures that were converted into daily measures and included: number of visits at the 
feeder per day (NVF), average intake at the feeder (AIF), average time at the feeder 
(ATF). Group C included single-visit measures then converted to daily records and 
included: number of visits (NVG), carbon-dioxide daily emission (CO2), methane daily 
emission (CH4), average airflow (AIR) and average time (ATG). 

Variance components and genetic parameter estimation (heritability and genetic 
correlations) was carried out using a GBLUP mixed model that included a genomic 
relationship matrix built on the SNP markers.
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The growth traits showed the largest estimates of heritability, close to 0.40. Heritability 
estimates for the RIC-derived traits were lower, ranging from 0.167 (AIF) to NVF (0.306). 
Estimates for emission traits ranged from 0.241 for ATG to 0.480 for CO2.

Results suggest that selection indices could be built in order to reduce GHG emissions 
without compromising growth, condition, stature and feed intake. The upcoming research 
should be focused on the use of feed efficiency and relative GHG emission, as these 
components need to be adjusted by the growth and size of the animal. Subsequently 
a further data-set should include GC sire performance and their daughters’, reared in 
dairy commercial farms.

Keywords: Greenhouse gas emissions, feed efficiency, genomic selection, Italian 
Holstein. 

Dairy cattle is known to be impactful on greenhouse gasses (GHG) emissions, with its 
enteric emissions accounting for over ten percent of the emissions from the livestock 
sector globally (Gerber et al., 2013). Methane emissions are also energetically 
expensive because of the fermentation process (Appuhamy et al., 2016) but this 
inefficiency could be reduced by steering the fermentation process, redirecting the 
energetic resources to reproduction and milk production (Haque, 2018). Methane and 
carbon dioxide emissions have been shown to be heritable, providing the basis for 
applying genetic selection for their reduction (Cassandro et al, 2010; Cassandro M., 
2013; Cassandro et al., 2013; Pickering et al., 2015; Lassen and Løvendahl, 2016). 
Such selection could be applied by selecting directly for breath measurements, but 
also using indirect selection including indicator traits such as feed intake (de Haas et 
al., 2017; Niero et al., 2020).

The objective of this study was to estimate genetic parameters for verifying the feasibility 
of (direct or indirect) selection for reduced GHG emissions in Italian Holsteins.

The animals involved in this study were young Italian Holstein bulls undergoing progeny 
test 

in the genetic centre of the Italian National Breeders Association for the Holstein, Brown 
and Jersey dairy cattle breeds (ANAFIBJ) as reported by Callegaro et al. (2022). The 
ANAFIBJ genetic center is equipped with five Roughage Intake Control system units 
(RIC; Hokofarm Group, Voorsterweg, The Netherlands) distributed over three pens. 
One of the three pens is also equipped with the Automated Head-Chamber System 
(AHCS; GreenFeed C Lock Inc., Rapid City, SD, USA), an automated feeding station 
designed to measure daily CH4 and CO2 emissions (g/d) from ruminant’s breath (Hristov 
et al., 2015). 

Phenotypic data was made available on 221 Holstein bulls between the age of 171 
and 541 days. All bulls were genotyped using various SNP chips resulting in 69,127 
SNP. Genomic data was edited using the preGSf90 software (Aguilar et al., 2010), 
removing SNP with call rate below 0.90 and minor allele frequency below 0.05. After 
editing, 61,591 SNP were available.

The first set of traits included measures of body growth taken using electronic scales 
and stadiometers operated by qualified personnel. These included body weight (WEI), 
body condition score (BCS), heart girth (HG) and height (HEI). The second group of traits 
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included measures of feed intake and feeding behaviour assessed using the Roughage 
Intake Control system (RIC; Hokofarm Group, Marknesse, The Netherlands). Records 
were organized as daily measures: number of visits at the feeder per day (NVF), 
average intake at the feeder (AIF), average time at the feeder (ATF). The third group 
of traits included measures of greenhouse gasses emission and were obtained using 
the GreenFeed (C Lock Inc., Rapid City, SD, USA). Again, the single-visit measures 
were converted to daily records and included: number of visits (NVG), carbon-dioxide 
daily emission (CO2), methane daily emission (CH4), average airflow (AIR) and average 
time (ATG). A single dataset was created, containing all the phenotypic information. 
Individuals showed an average of 4 records for the growth traits, 36 records for the 
RIC-derived traits, 19 records for the GreenFeed-derived traits. For all records, the 
age at recording was calculated. In addition, the date of birth of the individual was 
transformed to numerical values as the difference, in days, from a fixed arbitrary date.

Estimates of variance components and genetic parameters were carried out using a 
linear mixed model that included a genomic relationship matrix constructed using the 
SNP markers. The model was defined as follows: 

y = Xb + Zdd + Zpp + Zaa + e						      (1)

where y is the vector containing phenotypic records, X and b are the incidence matrix 
and vector of solutions for the fixed effects (age at phenotyping, date of birth), Zd and d 
are the incidence matrix and vector of solutions for the ‘date of recording’ uncorrelated 
random effect, Zp and p are the incidence matrix and vector of solutions for the animal 
permanent environmental uncorrelated random effect, Za and a are the incidence matrix 
and vector of solutions for the animal additive genetic random effect (with genomic 
relationship matrix), e is the vector of random residuals. The model was implemented 
for single-trait and two-trait analyses in order to obtain estimates of heritability and 
genetic correlations, using the gibbs2f90 software (Misztal et al., 2002). Estimates of 
variance components and genetic parameters were obtained as posterior means and 
their dispersion was obtained as the posterior SD and the 95% confidence intervals. 
The heritability was expressed as the ratio between the additive genetic variance and 
the sum of the four variance components. 

Descriptive statistics and heritability estimates for the studied traits are reported in 
table 1. The growth and condition traits showed the largest estimates, all being above 
or close to 0.40. While these traits are expected to be highly heritable, the estimates 
appear larger compared to those found in literature. This could be due to the relatively 
small sample size. On the other hand, heritability estimates for the RIC-derived traits 
were lower, ranging from 0.167 (AIF) to NVF (0.306). Heritability estimates for the 
emission traits were moderate to high, ranging from 0.241 for ATG to 0.480 for CO2.

Genetic correlation estimates are reported in table 2. Among the growth traits, 
correlations were strong for WEI-BCS and BCS-HG, but weak for all the other 
combinations of traits. Correlations between NVF and AIF was 0.74, the genetic 
correlation between AIF and ATF was 0.98 (result not shown in table). Correlations 
among the GreenFeed-derived traits were moderate to strong, especially among CH4, 
CO2 and AIR, which were all above 0.70. NVG was moderately related to the other 
GreenFeed-derived traits, with correlations below 0.7. The genetic correlation between 
AIR and ATG was 0.95 (result not shown in table). Genetic correlations between the 
growth traits and the RIC-derived traits were all positive and strong, approaching unity 
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(0.89 to 0.99). Genetic correlations between the growth traits and the GreenFeed-
derived traits were also positive and strong, with values ranging from 0.90 to 0.96. 
Similarly, the genetic correlations between the GreenFeed-derived traits and the RIC-
derived traits were positive and moderate to strong, with values from 0.60 to 0.73. 

The estimates show substantial genetic variation for all the studied traits. The CO2 and 
CH4 daily emissions show high heritability with the possibility of selection, therefore 
reduction of GHG emissions. The estimated values for the heritability of CH4 and CO2 
are larger than values found in literature (Lassen and Løvendahl, 2016; Brieder et 
al., 2018), although this could be due to the involvement of growing bulls rather than 
lactating cows and the limited sample size in the current study. The genetic correlations 
indicate that there is the possibility to select for less impactful animals. The genetic 
correlation between CO2 and CH4 emissions is strong (0.84), suggesting that selection 
for one component of the emissions would improve the other as well. Similarly, the 
AIR shows strong correlations with the GHG emissions, suggesting that this trait could 
be used as an indicator. Similarly, the NVG could serve as an indicator trait to reduce 
the emissions, although the achievable genetic progress would be limited due to the 
moderate genetic correlations (0.7-0.8). In fact, the value of 0.7 was indicated as the 
minimum acceptable value for achieving a relevant genetic progress in case of multiple-
trait genomic predictions by Calus and Veerkamp (2011). Using this same criterion, 
NVF could reduce GHG emissions better than feed intake (AIF) given the stronger 
genetic correlations (0.74 vs ~0.65). Unsurprisingly, selection for larger animals will 
also lead to individuals that consume more feed with all correlations between growth 
traits and RIC-derived traits being close to 0.9. Similarly, selection for larger animals 
could lead to more GHG emissions (correlations close to 0.9). In general, selection 
indices could be built in order to reduce GHG emissions without compromising growth, 
condition, stature and feed intake. The upcoming research should involve the use of 
feed efficiency and relative GHG emission, as these components need to be adjusted 
by the growth and size of the animal. 

 

Results suggest that selection indices could be built in order to reduce greenhouse 
gas emissions while still improving growth, condition, stature and feed intake. The 
upcoming research is involving the use of feed efficiency and relative GHG emission, 
as these components need to be adjusted by the growth and size of the animal as 
well as production records from cows that are sibs of the tested bull. Moreover, we will 
test these bull’s semen in other experimental stations equipped with these precision 
instruments in order to register intake data and GHG data emission on some of the 
daughters of these bulls and re-estimate the genetic correlations between bulls and 
cows as proposed by other colleagues in the early nineties (Nieuwhof et al.,1992) 
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Table 1. Descriptive statistics (posterior means with posterior standard deviation) and 
heritability estimates for the traits analysed.  
 

Trait1 Metric N Mean SD h2 
WEI kg 885 309.3 77.5 0.45 (0.24) 
BCS score 849 3.0 0.3 0.51 (0.20) 
HG cm 715 157.3 14.2 0.44 (0.25) 
HEI cm 714 125.5 7.7 0.39 (0.23) 
NVF count 7150 26.0 11.6 0.31 (0.12) 
AIF kg 7150 0.3 0.1 0.17 (0.15) 
ATF s 7150 317.0 117.1 0.29 (0.18) 
NVG count 2817 3.9 1.7 0.36 (0.11) 
CO2 g/d 2817 6198.2 1103.9 0.48 (0.21) 
CH4 g/d 2817 223.6 51.8 0.40 (0.17) 
AIR L/s 2817 29.2 4.0 0.45 (0.09) 
ATG s 2817 329.3 87.5 0.24 (0.11) 

1WEI: body weight; BCS: body condition score; HG: heart girth; HEI: height; NVF: number of 
visits at the feeder; AIF: average intake at the feeder; ATF: average time at the feeder; NVG: 
number of visits at the GreenFeed; CO2 daily carbon dioxide emissions; CH4: daily methane 
emissions; AIR: average airflow at the visit; ATG: average time at the GreenFeed.  
 
 
 
Table 2. Estimates of genetic correlations1 among the growth-related traits2, the RIC-derived 
traits2 and the GreenFeed-based traits2. 
 

 WEI BCS HG HEI NVF AIF NVG CO2 CH4 AIR 
WEI  0.84 0.75 0.64 0.95 0.99 0.93 0.92 0.92 0.94 
BCS 0.84  0.72 0.55 0.90 0.98 0.97 0.93 0.93 0.95 
HG 0.75 0.72  0.11 0.90 0.98 0.94 0.90 0.90 0.94 
HEI 0.64 0.55 0.11  0.90 0.97 0.95 0.92 0.92 0.95 
NVF 0.95 0.90 0.90 0.90  0.75 0.73 0.63 0.67 0.69 
AIF 0.99 0.98 0.98 0.97 0.75  0.67 0.55 0.58 0.61 
NVG 0.93 0.96 0.94 0.95 0.73 0.67  0.70 0.77 0.92 
CO2 0.92 0.93 0.90 0.93 0.63 0.55 0.70  0.81 0.81 
CH4 0.92 0.93 0.90 0.92 0.67 0.58 0.77 0.81  0.83 
AIR 0.94 0.95 0.94 0.95 0.69 0.61 0.92 0.81 0.83  

1Estimates of the genetic correlations are the posterior mean for the parameter. Values in bold indicate that 
the value ‘0’ was not included within the 95% confidence intervals, therefore are to be considered significant 
for P<0.05. 
2WEI: body weight; BCS: body condition score; HG: heart girth; HEI: height; NVF: number of visits at the 
feeder; AIF: average intake at the feeder; NVG: number of visits at the GreenFeed; CO2 daily carbon dioxide 
emissions; CH4: daily methane emissions; AIR: average airflow at the visit. 
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Rumination time was assessed as an indicator of efficiency and sustainability in dairy 
cattle. This study comprised 7782 records on 656 mid-first lactation Holstein cows. 
Animal models were used for rumination time and methane emission traits, while 
repeatability animal models were used for feed efficiency and production traits in 
bivariate analyses to estimate genetic parameters, including heritability, and genetic and 
phenotypic correlations between all traits. Rumination time had a moderate heritability 
(0.48+0.14) and genetic correlations of -0.45 (+0.25) with methane production, -0.88 
(+0.24) with methane intensity, -0.08 (+0.19) with feed efficiency, and 0.48 (+0.18) with 
energy corrected milk. Although these findings should be validated in larger datasets, 
they suggest that rumination time has the potential to be used as an indicator trait for 
methane emissions and production levels.

Keywords: Rumination time, methane, dairy.

Livestock is responsible for 6% of the global anthropogenic greenhouse gas (GHG) 
emissions (Gerber et al., 2013) with methane (CH4) from the eructation of ruminants 
being a major contributor (Beauchemin et al., 2020). The production of CH4 also 
corresponds to a 10% loss of dietary energy (de Haas et al., 2011). A decrease in 
CH4 emissions would improve both efficiency and sustainability in the dairy sector. 
The recording of CH4 and feed efficiency (FE) is costly and time-consuming, making 
the use of related traits that are inexpensive and easily measured necessary. One 
candidate indicator trait for CH4 emissions and FE is rumination time (RT). Measured by 
automated sensors such as rumination collars, RT is already used at the commercial 
level in the monitoring of functional and production traits (Kaufman et al., 2018). For 
RT to be an indicator trait, it should be heritable and genetically correlated to traits 
of interest (Byskov et al., 2017). This study aimed to evaluate RT as an indicator of 
sustainability and efficiency in dairy cows by estimating genetic parameters, phenotypic 
and genetic correlations among RT, CH4 emission, FE, and production traits in Canadian 
Holstein cows.
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This study comprised 656 first lactation Holstein cows between 110 and 210 days in 
milk. Measured traits were rumination time (RT), methane production (CH4), methane 
yield (MeY), methane intensity (MeI), dry matter intake (DMI), feed efficiency (FE), 
metabolic body weight (MBW), and energy corrected milk (ECM). Rumination time 
in minutes per day was obtained from Heatime® neck collars, (SCR HiTag, Allflex, 
Netanya, Israel) (Schirmann et al., 2009; Andreen et al., 2021). Milk samples were 
collected weekly and analysed by Lactanet Canada (Guelph, ON) for fat and protein 
content in kilograms. Energy corrected milk was calculated, where ECM = (0.25 x milk) 
+ (12.2 x fat) + (7.7 x protein) (Sjaunja et al., 1990). Daily live body weight (BW) records 
were used for the calculation of MBW as BW0.75. Records for DMI in kilograms were 
obtained as the product between total mixed ration (TMR) intake in kilograms and the 
calculated dry matter percentage in the diet, where TMR intake was calculated daily 
as the difference between offered and leftover feed. Feed efficiency was calculated 
by a recursive linear transformation of DMI based on the genetic (co)variances among 
DMI, ECM and MBW (Jamrozik et al., 2021). Methane emission was obtained using 
the GreenFeed® System (C-Lock Inc., Rapid City, South Dakota, USA) (Hristov et 
al., 2015; Huhtanen et al., 2015). Methane records were used to calculate MeY and 
MeI as grams of methane per kilograms of DMI and ECM, respectively. Each trait was 
assessed for outliers at three standard deviations from the average. All traits had to 
have a minimum of two records per week of lactation to be considered for analysis, 
where the week of lactation was defined using the milk test day. Finally, all traits were 
averaged for the week of lactation. Cows had repeated records of weekly averages 
for DMI, FE, ECM and MBW.

Animal models were used for RT, MeY and MeI, while repeatability animal models 
were used for FE, DMI, ECM, and MBW in bivariate analyses to estimate genetic 
parameters. All (co)variance components were estimated using the average information 
residual maximum likelihood algorithm in ASREML 4.0 (Gilmour et al., 2015). For each 
trait, heritability was the average result from all bivariate combinations. In general, the 
model used in this study was: 

Yijklm= µ + ACi + WLj + YSk + al + pel + eijklm,

where Yijklm represents the mth phenotype (for RT, CH4, MeY, MeI, FE, DMI, ECM, and 
MBW) of the lth animal; µ is the overall mean of the trait; ACi is the fixed effect of the 
ith age at calving class in months (nine classes); WLj is the fixed effect of the jth week 
of lactation (fifteen levels); YSk is the fixed effect of the kth year and season of calving 
class (sixteen classes); al is the random additive genetic effect of the lth cow; pel is the 
random permanent environmental effect (for FE, DMI, ECM and MBW) of the lth cow, 
and eijklm is the random residual error term. 

The heritability (h2) estimates in Table 1 show that selection is possible for all analysed 
traits. The estimated RT h2 (0.48+0.14) was larger than 0.33+0.16 and 0.34+0.05 
previously reported (Byskov et al., 2017; Moretti et al., 2018). However, these studies 
used different trait definitions for RT, which could affect h2 estimates. Estimated 
heritabilities of CH4, MeI, and MeY are found to range from 0.05 to 0.38 (de Haas et 
al., 2011; Manzanilla-Pech et al., 2021) and the variation in the results can be attributed 
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to the environmental impact on the methane produced by cows, and the method of 
measurement (López-Paredes et al., 2020). The h2 for FE (0.13+0.07) was within the 
reported range for FE (0.01 to 0.40) (de Haas et al., 2011; Vallimont et al., 2011). 
Thus, improvements in FE could be possible through selection, however, correlation 
with other economically important traits should be assessed. 

Genetic correlations were estimated between all traits (Table 1). The bivariate 
analysis between MeY and RT did not converge, and this may have been caused 
by the model not being robust enough to estimate parameters for all traits in a small 
data set. Rumination time was uncorrelated to FE and had negative correlations with 
CH4 (‑0.45+0.25), MeI (-0.88+0.24) and MBW (-0.24+0.12) while showing positive 
correlations with the remaining traits. The genetic correlations between RT and ECM 
(0.48+0.12) could be a relationship to be exploited by selection programs. Greater 
rumination and production could be linked to a greater intake by the cows, as shown 
by the correlations between RT and DMI (0.17+0.14), and between ECM and DMI 
(0.55+0.16). Additionally, the increased intake could suggest a faster passage rate, 
and lower fermentation rate (Ramin and Huhtanen, 2013), possibly explaining the 
association between RT and CH4, and between RT and MeI. 

The goals of this study were to estimate genetic parameters for automatically recorded 
RT and identify if RT is genetically correlated to efficiency, methane production, yield 
and intensity, and milk production. Our findings show that RT is heritable and is a 
candidate trait for the identification of low-emitting and high-producing animals with 
no direct impact on efficiency. 

The authors acknowledge partners and collaborators of the efficient dairy genome 
project (https://genomedairy.ualberta.ca/) and the resilient dairy genome project (http://
www.resilientdairy.ca). 
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Livestock production contributes to global human-induced greenhouse gases 
(GHG) emissions in the form of CH4, N2O and CO2. Beyond climate change, direct 
CH4 emissions are also linked with efficiency in dairy cows. The aim of this study was to 
estimate genetic correlations between methane emissions and nitrogen use efficiency 
(NUE) in Walloon dairy cows. Milk mid-infrared (MIR) spectra were used to predict CH4 
emissions (PME, g/d) using existing equations. The trait log-transformed CH4 intensity 
(LMI) was defined as the log-transformed ratio of PME divided by the daily milk yield 
(MY, kg/d) recorded on the same test-day achieving a more normal distribution. The 
values of predicted NUE (PNUE) and N losses (PNL) as proxies of the NUE and N loss 
were obtained using the combined MIR spectra, parity, and milk yield‑based prediction 
equations on test-day MIR records with days in milk (DIM) between 5 and 50 d. The 
used data were restricted to the first-parity cows. Random regression test day models 
were used to estimate genetic parameters with the Bayesian Gibbs sampling method 
using a single chain of 100,000 iterates with a burn-in period of 20,000 iterates. Mean 
(SD) daily h2 estimated for PME and LMI were 0.14 (0.05) and 0.24 (0.05), respectively. 
Mean (SD) daily genetic correlation estimated between PME and LMI was 0.55 (0.03). 
At a level of reliability of more than 0.30 for all examined traits, breeding values of 
420 bulls born after 1995 were used to estimate the approximate genetic correlations 
(AGC) between PME and LMI and PUNE and PNL. The AGC estimated between 
PME and PUNE was -0.33 (0.07) and that found between LMI and PUNE was -0.60 
(0.07). The AGC estimated between PME and PNL was 0.43 (0.08) and that found 
between LMI and PNL was 0.32 (0.08). The results showed that CH4 emission, as 
an indicator of energy lose, is positively correlated with predicted nitrogen lose and 
negatively correlated with N use efficiency. It can be concluded that genetic selection 
for decreasing CH4 emission will also decrease N loss and increase N use efficiency 
in dairy cows. 

Keywords: greenhouse gas emission, mid-infrared spectrum, genetic relationship 

Efficiency traits in dairy production have received increasing attention as affect not only 
farm profitability but also losses to the environment (Phuong et al., 2013). Therefore, 
the dairy industry is under constant pressure for further improvement of efficiency 
traits (Connor, 2015). If the nutrients consumed are not converted to milk, meat, 
body reserves, or new born calf, they are excreted into the environment, resulting in 
emissions such as urea (nitrogen (N) loss) and methane (energy loss) (Phuong et al., 
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2013). Proposed CH4 emissions traits include CH4 production, defined as the daily 
production (g/d); CH4 yield, defined as the amount of CH4 produced per unit of dry matter 
intake; CH4 intensity, defined as CH4 produced per unit of product (milk or meat), and 
residual CH4. An increasing number of studies showed that N use efficiency (NUE), N 
loss (urinary urea, milk urea, and faecal urea), and CH4 emissions are heritable traits 
and are correlated with milk yield and composition in dairy cows (Pickering et al., 
2015; Chen et al., 2021a; Chen et al., 2021b; Richardson et al., 2021). However, both 
types of traits (NUE and CH4 emissions) are challenging to record and to analyse on 
phenotypic and genetic level. Moreover, there is no report on the genetic correlation 
between proxies for N efficiency traits and methane emissions. Therefore, the aim of 
this study was to estimate approximate genetic correlations between CH4 emission 
and the N use efficiency in Walloon dairy cows.

Milk samples were collected on first parity cows from 2006 to 2021 by the Walloon 
Breeding Association (Ciney, Belgium). All milk samples were analysed using Milkoscan 
FT4000, FT6000, and FT+ (Foss-Electric A/S, Hillerød, Denmark) by the milk laboratory 
Comité du Lait (Battice, Belgium) to generate the MIR spectral data. Methane emissions 
(PME, g/d) were predicted from the recorded spectra using the equations developed 
by Vanlierde et al. (2021). To eliminate potential abnormal records, the PME values 
below the 0.1 percentile and above the 99.9 percentile were deleted (Kandel et al., 
2017). Methane emission intensity (PMI, g/ kg of milk) was defined as the ratio of PME 
divided by the daily milk yield (kg/d) recorded on the same test-day. The PMI was then 
log-transformed to be normally distributed and called log-transformed CH4 intensity 
(LMI). Records from days in milk (DIM) lower than 5 d and greater than 365 d were 
eliminated. Age at the first calving (AFC) was restricted to the range of 540 to 1200 
d. The final dataset consisted of 1,529,282 test-day records on 229,465 first-parity 
cows distributed in 1,530 herds collected from 2006 to 2021. The EBV and reliability of 
predicted NUE (PNUE) and N losses (PNL) were obtained from (Chen et al., 2021b).

The (co)variance components for PME and LMI were estimated using the following 
random regression test-day model (RR-TDM).

where yijyklmn is the test-day record (PME or LMI) on DIM m of cow l, belonging to ith 
class of HTD, jth class of AS, and kth class of HY, HTD is the fixed effect of herd-test-
day, AS is the fixed effect of age-season of calving defined as following: age at calving 
class (10 classes) × season of calving (four seasons), 

is the fixed regression coefficients of the age-season at calving modelled using Legendre 
polynomials of order 4,
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are, respectively, the random regression coefficients of herd-year at calving (HY), 
permanent environment, and additive effects modelled using Legendre polynomials 

of order 2, and  eijklm is the residual effect. 

The (co)variance components were estimated by Bayesian inference using the 
GIBBS3F90 software (Aguilar et al., 2018). Gibbs sampling was used to obtain 
marginal posterior distributions for the various parameters using a single chain of 
100,000  iterates. The first 20,000 iterates of the chain were regarded as a burn-in 
period to allow sampling from the proper marginal distributions. Genetic (co)variances 
on each test day were calculated using the equation described by Jamrozik and 
Schaeffer (1997). Daily heritability was defined as the ratio of genetic variance to the 
sum of genetic, permanent environmental, herd-year calving, and residual variances 
at a given DIM. The vector of estimated breeding values of each animal l (EBVl), which 
included daily EBV from all DIM (5 to 365) as estimated by multiplying the vector of 
predicted additive genetic random regression coefficients by the matrix of Legendre 
orthogonal polynomial covariates; that is EBVl = Tâl, l where is the vector of predicted 
additive genetic coefficients for animal l, and T is a matrix of orthogonal covariates 
associated with the Legendre orthogonal polynomial functions. In addition, the total 
EBV of animal l was obtained by averaging the EBVs from day 5 to 365 as following: 

The approximate genetic correlations (AGC) between PMI, LMI, and PNUE, PNL were 
estimated using the strategy presented by Blanchard et al. (1983). Bulls born after 
1995 (included) with more than 0.30 in reliability for EBV of all traits were selected. 
The method of calculating standard errors of the AGC was the same as Chen et al. 
(2021b). The total EBV and reliability of PMI and LMI were used in this part.

Means (SD) for PME, PMI and LMI were 326.8 (67.65) g/d, 14.97 (5.70) g CH4/kg 
of milk yield, and 2.64 (0.35), respectively. The mean PME found (326.8 g/d) was in 
the range reported by previous studies (Pickering et al., 2015; Kandel et al., 2017). 
Heritability estimates for PME and LMI were relatively stable across lactation, with a 
mean h2 of 0.14 and 0.24, and peak h2 of 0.21 and 0.30, respectively. Moderate h2 
were estimated for PME and LMI in agreement with the literature (De Haas et al., 
2011; Kandel et al., 2017; Sypniewski et al., 2021). A total of 420 bulls were used to 
estimate AGC between the proxies for N efficiency traits and methane emissions. Most 
of them belong to the US (137), the Netherlands (111), and Canada (52). The average 
reliabilities (SD) of EBV for PME, LMI, PNUE, and PNL were 0.84 (0.16), 0.84 (0.16), 
0.48 (0.15), 0.49 (0.15), respectively. Estimated AGC (SE) between PME and PNUE 
was -0.33 (0.07) and between LMI and PNUE was -0.60 (0.07). The AGC (SE) estimated 
between PME and PNL was 0.43 (0.08) and between LMI and PNL was 0.32‑(0.08). 
Methane emissions, as an indicator of energy lose, are positively correlated with PNL 
and negatively correlated with PNUE. These results seem to suggest that selection of 
NUE and CH4 simultaneously is possible.
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This study suggests that genetic selection for decreasing CH4 emissions could also 
decrease N loss and increase NUE in dairy cows. The AGC estimates found in this 
study could be helpful to setup future breeding goals. Furthermore, we only start to 
apprehend the complexity of holistic breeding goals accounting not only for feed and 
production efficiencies, and GHG emissions but also resilience and productivity. 
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J. Frandsen, T. Hejgaard Sørensen and L.A. Nielsen 

SEGES Innovation, Denmark 

Danish dairy farmers have access to one of the most comprehensive management 
systems in the world. Data is the key to most management decisions on the farm and 
with advances analytics, data is transformed into valuable insights. Below are four 
examples of advanced analytic solutions available to the Danish dairy farmers. 

•	 Predictive forecasting models is used to predict the cell count for the coming 4 
months. The prediction is based on more than 7 years of data, taking detected 
seasonality into account.

•	 Advanced statistical models are implemented several places for example to predict 
lactation curves for individual and groups of cows. Advanced statistical models are 
also used to create a graphical analysis tool showing a longevity profile and a claw 
trimming profile for individual herds.

•	 Key influencers are derived from regression analysis in a reproduction management 
tool available to dairy farmers. The identified key influencers are the individual 
factors with the most impact on reproduction results.

•	 AI solutions such as Optical Character Recognition (OCR) and speech recognition 
is implemented in mobile apps to simplify data entries for the Danish farmers.

The Danish Cattle Database system is unique in the sense that data from sources 
within the whole dairy industry is registered in one place and therefore provides a huge 
amount of information available for both farmers, advisors, and researchers, see the 
overview in figure 1. Examples of some of the more important data contributors to the 
Danish Cattle Database are:

•	 The farmers.

•	 Dairies – daily amount of delivered milk and analysis.

•	 Slaughterhouses – weight and quality data on culled animals.

•	 Breeding companies.

•	 Veterinarian management system.

•	 Milking equipment management systems.

•	 Feeding equipment management systems.

•	 Sensor equipment management systems.
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The data registered on animal level are movement data, milk recording data including 
milk quality analysis, reproduction events from heat to pregnancy, registration of 
disease, treatment and medicine consumption, slaughter data like quality and weight, 
sensor data like activity and health alerts and in some cases also daily milk weight 
from milking equipment. On group and herd level the database receives delivered milk 
incl. quality analysis and feed consumption each day.

The big amount of data at the representation across all areas in the dairy production 
gives a good foundation for solid data analysis to guide the farmer and the service 
sector around the farmer.

In the following there is a short description of how data are uses in analyses of the 
production to guide the farmer towards optimizing the production. The main engine 
in the data analysis is the Data WareHouse, DWH, where the raw data are crouched 
and processed to enriched key figures and used in different reports and systems. 
Most of the reports are build in Microsoft Power BI, which offers motivation dynamic 
presentation of the data, and a continuedly development in functionality

With certified data on milk production from the milk recording on more that 90% of the 
dairy cattle and validated movement data and solid reproduction data SEGES has 
analysed data and developed a system to forecast the production. By using data on 
the individual cow, it is possible to make the forecast on the individual cow. These 
forecasts are used in different analyses from lactation analyses to forecast of the 
production for budget purposes

Figure 1. Overview of the Danish Cattle data, and management system.
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The dairies in Denmark use SSC as a parameter in their payment to the farmer, 
which leads for a decrease in payment for e number of farmers. Bu using the forecast 
possibilities in Power BI on the data series in the database the farmer in DMS can see 
the consequences in payment id nothing is done. As a supplement to the data DMS 
present some advises about how to avoid the problem

By using data from the different sources DMS presents a daily Dashboard for the dairy 
farmer to guide in where to focus. It gives a daily KPI overview of the herd performance 
on milk production, reproduction, heath and feeding including a reference to goals for 
the performance.

     

Prescriptive data

Daily dashboard

Benchmarking

Conclusion 

 
 
 
 

A lot of farmers find a big motivation in benchmark against other similar herds 
performance. By using data and the daily data processing in the Data WareHouse DMS 
provides a Benchmarking system with more than 140 key figures with possibilities to 
benchmark against other comparable herds and own goals as seem in this example

All in all, the data in the Danish Cattle Database are used to analysis for the benefit 
of the farmer, it

•	 Gives the farmers a very qualified basis for making decisions on an operational 
and strategic level regarding their production.

•	 Gives the service entities around the famer the best possible basis for servicing 
and advising the farmers.

•	 Makes it attractive for the on farm equipment suppliers to join the data exchange 
for the benefit of the farmers.



48



49

ICAR Technical Series no. 26

Exchanges of French genetic data are driven by farmer 
consent managed in a dedicated blockchain 

L. Journaux1, L. Duveaux2, H. Gilles3 and S. Picardat4

1France Génétique Elevage (FGE), 149 rue de Bercy 75595 Paris cedex 12, France
Corresponding Author: laurent.journaux@france-genetique-elevage.fr

2Association SPIE, 9 avenue George V, 75008 Paris, France
3FAST, 149 rue de Bercy 75595 Paris cedex 12, France

4Agdatahub, 9 avenue George V, 75008 Paris, France

FGE manages French collective system for the genetic improvement of ruminants 
and offers services to its members with shared genetic information systems.  The 
information system for cattle genetic improvement manages 200 million of animal (+7.5 
million per year) and more than 1 billion of information (+40 million per year), coming 
from 44 000 farms, recorded and used by more than 300 companies (135 with a very 
significant activity). 

FGE launched in 2020 the deployment of a new professional national data base, 
connected with a dedicated data exchange platform and a breeder’s consents 
verification platform “Agata Consent” to validate and secure the exchange based on a 
consortium blockchain solution. The system, in production for the first users, ensures 
the informed consent of breeders speaking about the use of their data by several 
professional organizations for research and development, genetic improvement or 
innovation, without any intervention from the user. It works as a trusted third party to 
exchange data even with multiple addressing, with addressing parameters supported by 
web services. It increases the confident of breeders and organizations in the exchanges 
and the uses of data all along the value chain, in adequation with the European Data 
Act regulation.

Since the 60’s, the French cattle breeders’ organizations have been structuring their 
technical data recorded on farm for ruminant production (cattle, sheep and goat) at 
regional and national levels. Initially, the investment and infrastructures were funded 
and performed by state. 

Gradually, the part of investment and cost supported by breeder’s organization 
increased. Today, the cost and investments of the system are supported by farmer’s 
funds for 90% and by state subsidies for 10%.

A first step occurred in 1998 to renew all the system in a distributed relational database. 
The system was well adapted to the land organization with, small to medium size, local 
farmer associations or cooperatives (Rehben et al., 2005; Rognant et al., 2005). The 
system, currently in production (Balvay 2017, Balvay et al., 2014), has been managed 
by the national professional organization France Génétique Elevage (FGE) for 14 years 
with the development of new tools as consent management. 
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For Cattle, the information system covers animal identification, parentages, performances 
(i.e. milk production, weight, fertility and so on) and genotyping (DNA information) 
with all the technical information to use this data for statistical treatments (location, 
birth date, calving rank…). These data are specially used to estimate the breeding 
value of animal and to perform advices for the farmers; these data are exchanged at 
international level to establish international ranking of artificial insemination sires on 
breeding values. In addition, this information is available for farmers themselves and 
others clients like private companies.

The amount of data collected each year is very large as the total amount of information 
cumulated for 60 years.

The number of actors who contribute to the system is large: more than 300 data 
providers in 2019. 135 of them exchanged more than 10 000 records.

One specificity of this information system is to manage data on a very long term: the 
statistical studies performed to estimate breeding values needs a very large number of 
data and a knowledge of pedigree with a maximum of depth (minimum 4 generations 
of ancestors, i.e. data managed during a minimum of 30 years for Cattle!)

The data exchange in France are regulated by EU regulation on personal information 
– RGPD, CNIL 2022. In the next year this regulation will be updated by the Data 
Governance Act. While the Data Governance Act, presented in November 2020 and 
agreed by co-legislators in November 2021, creates the processes and structures to 
facilitate data sharing by companies, individuals and the public sector, it also clarifies 
who can create value from data and under which conditions. Especially, the Data 
Governance Act defines a new role of Data Intermediary Service Provider which must 
be independent of any storage or treatment of any kind. Furthermore, to ensure the 
liability and accessibility of data from production, beneficiary companies will have to 
ask for an explicit consent (prolonged GDPR for non personal data). This consent 
must be also verifiable on behalf of any data exchange. This new regulation will be in 
force by the end of 2023 (EU, 2022).

Nowadays, the situation has evolved a lot compared to the beginning of the century. In 
some parts of the territory some small organizations remain structured around regional 
information systems managed by breeder cooperatives or associations dedicated to 
this technical activity. But, in other parts, big players (more than 100 M€ income) are 
individually part of the game. They have an internal information system covering all 

A new landscape 
for regulation 

A new landscape 
of actor for new 
needs on data

1 
 

 
Table 1. Number of data managed in the cattle information system (in Millions) 

 

 Identities Births Lactations Milk 
records Weighing Morphology 

records Inseminations 

Records created  
in 2021 

7,012 6,749 2,232 20,393 1,271 1,156 6,514 

Total in the  
database 

233,6 158,0 114,3 857,0 49,1 25,2 189,0 
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the aspects of the management of the company, technical data dedicated to genetic 
improvement is now only a part of information system structured in ERP (Enterprise 
Resource Planning). 

The demand for exchange of data for multiple use is now very frequent and push the 
development of new solutions of exchange or sharing of data (iDDEn Reents and 
Pekeler, 2021; DataGene, Shaffer 2021; US Dairy Brain project Cabrera et al., 2021.

Since 2017, FGE engaged a large project to adapt the existing system to this new deal. 
After 3 years of initial studies the project is entering into the final phase of development 
and production.

The new system is a national database managed by FGE to capitalize all the data 
collected since the 60’s and a set of web services to support data exchange with all 
the regional or private information systems. 

The architecture of the new information system is organized to combine a national 
central data base with regional platform shared by several actors and private information 
systems where the technical information managed for genetic purposed is a part of 
integrated ERP of the company.

To take into account the mandatory respect of breeder consent in accordance 
with French and Eu regulation and to be compatible with policy of French Farmers 
Union, this new system is combined with a consent management system open to 
all the companies involved in cattle genetic improvement. This system is based on 
blockchain: this technology has been chosen for multiple reasons included its capacity 
of disintermediation and trust creation and the legal value of data encrypted and stored 
in the blockchain (as described in Leporcher, Goujon, Chouli, 2019)

Exchange between the different databases will be performed by web services

The development of a consent management system paired with a web services 
exchange system aims at ensuring the informed consent of breeders speaking about the 
use of their data by several professional organizations for research and development, 
genetic improvement or innovation. This system is implemented in the new organization 
to increase the confident of breeders and organization in the exchange and the uses 
of data.

•	 If an organization of genetic improvement environment obtained a consent of the 
farmer for a family of data, it can use the data in accordance with the use stated in 
the consent and it will have an easy access to the data using the tools developed. 

•	 If a company outside the genetic improvement frame obtained a consent of the 
farmer and organization who recorded the data’s, it can use the data in accordance 
with the use stated in the consent and it will have an easy access to the data using 
the tools developed.

The web service solution used is a very standard solution. The publication of web 
service messages will allow a large use by actors of cattle genetic improvement and 
other players. 

To facilitate data exchange, and extension at national or European level, FGE seeks 
to maintain the highest compatibility with international data exchange standard. It’s 
Includes, at the first place, the Animal Data Exchange Standard promoted by ICAR 
(ICAR ADE, 2022). This new French genetic data system already applies all the legal 
requirements concerning the Data Government Act.

Description of the 
new system
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The Base Pro database is based on the PostgreSQL opensource technology.

Base Pro will allow data exchanges between all actors involved in ruminant breeding 
sector and extended to the livestock value-chain according to modalities compliant 
with IT state of the art: Web Services.

These tools with standardized interfaces increase the efficiency of access to data by 
economic players and ensure compliance with management rules for exchanges. In 
particular, integration into web services of the systematic consent verification before 
any access to data to check the existence of the data’s right holder’s consent is a key 
factor in the confidence and appropriation of the system by these actors..

Focus on Base 
Pro and exchange 
system

Figure 1. Base Pro Web Services functional architecture.

In the target architecture the client will access to the web services through the data 
exchange system (SED) as a trusted third party. The authentication is based on a 
Keycloak standard solution. 

The technical application accounts are stored in a LDAP and managed through the 
administration portal PAGO which allows the management of the accounts and their 
access grants.

The technical framework is based on the standard technologies java/Rest/Wildfly/
Swagger.

The Base Pro web services are deployed on a multi-node infrastructure which offers 
following features:

•	 Scalablity / Redundancy.

•	 Security.

•	 Multi-node load balancing and resilience.

•	 Continuous integration platform.

•	 Industrialized platform based on a standard components catalogue.

•	 Multi-version.
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Figure 2. Simplified chart of solution.

•	 Documented Interface Contract (Swagger).

•	 Volumetric capacity:

	 10 000 000 requests/month.

	 Peak : 20 000 000 requests/day.

	 Capacity Load Tests: 13 000 000 requests/hour.

The consent management system called Agata Consent, developed by FAST company 
(FAST, 2022), was designed to achieve objectives of the Base Pro project: being 
able to ensure the collection of farmers’ consent for data exchanges between various 
actors of the breeding value chain and giving them access to the consents they gave. 

The system is combined with a data exchange management system (SED) developed 
by Agdatahub company (Agdatahub, 2022) to ensure security and trust. 

Administrators of data domains / perimeters can access an ergonomic interface to 
administrate, create, modify the consents. They can also directly use the available APIs 
for the different functionalities. Thanks to a detailed rights gestion, farmers access the 
same interface to consult and accept / refuse consents.

Farmers have their own simple and pragmatic interface to consult and modify (according 
to contractual  parameters) the delegations they gave to professional organizations 
and the related consents. This interface is exposed on Agri Maker (Agri maker, 2022), 
a digital services platform for agriculture, already gathering about 33 000 farmers and 
25 services.

Agata Consent is a decentralized consent management solution based on open-
source components that can be hosted on different cloud platforms using Kubernetes 
orchestrator. Webservices are developed based on Opensource Springboot framework. 
Full web management interfaces are developed with Javascript Angular framework, 

Focus on consent 
management 
system
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they are design responsive. Types encoding uses UTF-8 for exchange and storage, 
dates are encoded using the ISO 8601 norm.

Agata has a distributed architecture with a variable number of nodes, which is coherent 
with blockchain philosophy and ensure the security of the system by pseudonymization. 
Agata ensures consents privacy by encrypting all personal data in the blockchain.

Each node of Agata Consent Blockchain has the following technical architecture:

•	 HyperLedger Fabric Ledger: data storage in the blockchain.

•	 Smart contract: Java code used in the blockchain.

•	 Couch DB: database technology Fabric-CA: certification authority. 

•	 Orderer: Hyperledger control. 

The solution has a Tier III availability classification (with a maximum of 1,6 hours of 
unavailability per year)

If a specific organization obtained a consent of the farmer for a category of data (also 
called “data family”), it can use the data in accordance with the usage established in 
the consent. Moreover, the organization will have an easy access to the data using 
the tools developed. The system can also be used by a company outside the genetic 
improvement sector. Indeed, the Consent Management System is generically designed 
to be able to manage consents relating to data from all sectors of agri-food value 
chains and even other sectors of economy. It is organized into functional areas called 
“domains” within which data concerned and rules for managing consents are defined. 
This organization, which is both modular and generic, makes it possible to offer the 
service to a wide range of customers, while preserving specificities of each. 

Agata Consent has been identified as a mean to obtain the label “Data Agri” for the 
companies who will use this solution.

For the system initialization, 273 071 existing consents have been loaded. It’s concern 
74 534 herds and 138 companies. 

Agata Consent is technically compatible with the French consent portal AgriConsent, 
(Agriconsent, 2022) the commercial version of Multipass project (Lauga et al., 2019) 

The first 2 domains on which the system combining SED and SGC will be deployed 
are ruminant identification and genetic improvement. Moreover, even if the system 
has been developed in this objective, it is applicable to all the agricultural value chain.

The initialization of the system ended in May 2022 and we are now int the phase of 
increase in load.

The promoters of this solution hope that it will be applied on a large fields of animal 
data exchange.

Agdatahub, 2022, https://agdatahub.eu/

Agriconsent, 2022,, https://agri-consent.eu/

Agrimaker, 2022, https://www.agri-maker.com/home.

Conclusion
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Dairy farming is being intensively computerized, whereby the goal is to use the recorded 
data to optimize production processes. This requires extensive analytics, which needs a 
good understanding of the data. It is also necessary that the datasets be federated to be 
able to get an integrated view. Although conventional database tools are helpful in that 
process, it is believed that linked data and ontologies can provide seamless integration 
of different sources while providing a semantic layer allowing deeper introspection of 
data. The objective was to build an ontology to provide such a semantic layer to dairy 
herd improvement (DHI) data.

A large dataset of milk production data was provided by Lactanet, Canadian Network 
for Dairy Excellence. This data is typically heterogeneous, i.e., covering partially or 
thoroughly health, nutrition, yield, and genetics. It also possesses a complex structure, 
with a large variety of data for a unique animal, dispersed in many records and multiple 
tables. A dedicated domain ontology, referred to as the Dairy Cattle Performance 
Ontology (DCPO), was built from a semantic analysis of the datasets. The initial core 
set of entities was determined using the definitions and minimal attribute sets for traits 
provided by ICAR guidelines and CDN documents. This core was gradually enriched 
with lower-level entities and aligned to more abstract concepts from the Basic Formal 
Ontology (BFO) to provide a foundational theory. The process was validated by domain 
experts. DCPO provides a rich and extensible data schema, a vocabulary based on 
international standards to support stakeholder collaboration. It federates external data 
sources and provides a semantic interface to query the obtained integrated linked 
data. Finally, DCPO underlies a knowledge base supporting analytics and decision 
making. Preliminary evaluation followed a query-based approach: SPARQL queries 
were designed reflecting typical questions experts might ask to assess the practical 
usability of DCPO.

Mining structural regularities, or patterns, in data may lead an expert to discover 
unknown phenomena or to confirm an already formulated hypothesis. The benefit of 
using DCPO as vocabulary for patterns is to enable seemingly unrelated yet isomorphic 
sub-graphs in the data with diverging vertex and edge labels, to become identical 
once their labels are generalized to DCPO classes and properties. Key benefit thereof 
was the patterns were described using the domain expert language to increase their 
interpretability. Next, we plan to use the ontology to support the deep learning-based 
inference of predictive models for milk production.

Keywords: Precision agriculture, dairy farming, domain ontologies, knowledge discovery 
from data, graph mining.

Abstract
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Agriculture 4.01 refers to future trends helping the sector face the main challenges 
pertaining to the demands of the future. Precision farming, in particular, is about 
improving the overall farming process through in-depth analysis of its various aspects as 
reflected in their historical data generated by farming devices, produce/crop processing 
entities, regulatory bodies, etc. This requires all the stakeholders (e.g., producers, 
managers, analysts, consultants, etc.) to work together to leverage available data as 
a competitive advantage.

A typical approach is the design of machine learning or data mining-based analytical 
tools to, inter alia, predict outcomes in daily-life situations the stakeholders face or 
to detect major trends and/or exceptional events in the data. As living beings are 
involved, data are typically heterogeneous and complexly structured: They may cover 
such aspects as the well-being and health issues for farming animals, nutrition, yield, 
genetics, etc. Inner structure, e.g., time series, and inter-record relations, e.g., animal 
pedigree, would also appear in the data.

Constituting such complexly structured datasets requires a significant data-modelling 
effort. Moreover, as ever more aspects of the farming process get computerized, 
extensibility to further datasets is often a prime concern. This motivates a full-scale 
domain modelling in the form of a dedicated domain ontology (DO). DOs have a wide 
range of benefits beyond mere rich/extensible data schema. For instance, they provide 
a standardized vocabulary to support stakeholder collaboration while representing a 
centralized repository for domain expertise, thus enabling the design of decision-support 
systems for various domain tasks [1]. We present here the design of our dairy cattle 
performance ontology (DCPO), its current state and intended usage. The remainder 
of the paper is as follows: Section 2 presents our motivations while section 3 lists 
relevant prior work. Next, section 4 details our iterative modeling process and our tool 
set. Finally, section 5 concludes.

Lactanet2, is the dairy production centre of expertise covering the province of Quebec 
and the Atlantic regions of Canada. Lactanet’s accumulated data about dairy production 
and milk control describes 6,670 herds and 1.5M cows. Key concepts reflected in the 
data include milk control samplings and the associated laboratory-based analyses that 
estimate the principal milk components: fat, protein, milk urea nitrogen, etc. Overall, the 
records provided by Lactanet amount to 3+ billion data end points. This huge dataset 
hides potentially meaningful concepts, e.g., unproductive cows admitting improvement 
vs those to quickly sell, and behavioral patterns for cows or farmers, that need to be 
uncovered. In order to allow richly structured heterogeneous datasets to be: (1) properly 
built and (2) analyzed to yield meaningful and intelligible patterns, we decided to design 
a DO. A number of our dairy analytical tools are symbolic-level, including graph mining 
methods whose cornerstone is a DO-powered generalized pattern miner. Additionally, 
a set of predictive models exploiting deep neural net architectures have been designed 
targeting a variety of yield metrics such as milk production and overall cost [2]. The 
way these can benefit from the ontology and the graph mining tools’ output is currently 
under investigation. 

Introduction 

Motivation 

1https://www.worldgovernmentsummit.org/api/publications/
document?id=95df8ac4-e97c-6578-b2f8-ff0000a7ddb6

2https://lactanet.ca/en/home
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Several ontological sources have been developed about dairy production. The 
Animal Trait Ontology for Livestock (ATOL, https://www.ebi.ac.uk/ols/ontologies/
atol) models phenotypical animal traits. These are represented from an environment-
aware and animal breeding-driven point of view. A Common Dairy Ontology (CDO) 
[3],  has been designed towards assisting on farming decision making and semantic 
alignment (www.smartdairyfarming.nl).Yet CDO is primarily focused on sensor data 
and lacks a transverse view of the domain. AgroRDF [4] is a data exchange standard 
designed for agro-industrial purposes and built with semantic technologies. However, 
it lacks a unifying broader framework able to precisely describe the dairy domain. The 
agriOpenLink [5] system provides open interfaces and linked services to enable the 
development of new processes with a plug-and-play architecture. The Dairy Farming 
Ontology (DFO) is among the many created within the agriOpenLink project. Albeit 
strongly appealing for our own goals, it is not publicly available. The FAO (Food and 
Agriculture Organization of the United Nations) project develops agricultural standards 
such as AgroVOC vocabulary [6]. While it covers a wide range of subjects, it lacks 
middle-level concepts involved in dairy production, hence it is too generic for our needs.

In the recent past, DOs have been used to support a semantically rich data mining 
process. Indeed, they expose domain knowledge to machine processing while providing 
a rich vocabulary that is easily intelligible for domain experts [7]. Pattern mining [8], 
[9] aims at discovering recurrent data fragments in a dataset that might represent 
potentially useful trends and regularities (combinations of descriptors). Depending 
on data record topology and how much thereof is preserved in the patterns, various 
flavors of patterns have been studied, from itemsets (sets of products) to sequences 
to graphs. Independently, generalized patterns [10] have been introduced to deal 
with cases where abstracting from concrete data items (e.g. Corona virus instead of 
SARS CoV 2 can bring insights absent in the ground level of data records. Generalized 
patterns are defined on top of an item taxonomy.

Graphs are among the most challenging pattern formats and adding a DO on top of 
their vertex and edge labels further compounds the issue. Partial solutions to the graph 
mining with a DO problem were investigated in [11]–[13]. Both [12] and [13] under-exploit 
the ontological structure by focusing only on parts of it (object properties and classes, 
respectively). In comparison, our DO is intended to support abstraction on edges as 
well, e.g. use parent property in patterns to match the dam property (female parent of 
a bovine) in data. In [11], abstraction from both vertices and edges was formalized, 
yet for graphs built around a vertex sequence which largely eases the mining task. In 
contrast, we deal with unrestricted graphs.

Finally, the problem of feeding the knowledge from a DO into a neural learning process 
was approached in [14] with class-embedding-based techniques. Prior studies have 
investigated mimicking the ontological structure by the neural network architecture 
[15]. Unlike these, we rely on discovered graphs patterns for data augmentation [16].

We were provided with several non-ontological resources such as datasets of various 
provenance and coverage pertaining to dairy production, together with their data 
dictionaries. Additionally, we followed the International Committee for Animal Recording 
(ICAR, www.icar.org) guidelines and the publication of dairy cattle genetic evaluations in 
Canada provided by the Canadian Dairy Network (CDN, https://www.cdn.ca), consisting 
of publicly available data dictionaries. Starting from these resources, we applied an 
iterative modeling process inspired by the Ontology Summit 2013 Communiqué’s life 
cycle (://ontolog.cim3.net/OntologySummit/2013/communique.html. Below, we describe 
its main steps and outcomes. 

Related work

Building the dairy 
cattle performance 
ontology
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Our initial focus was on purpose and scope of the ontology. Figure 1 depicts the global 
architecture of the information system the ontology is intended to support.

The DCPO, in the center, is intended to support three use cases: (1) a federated 
schema for external data sources on the left, (2) a semantic interface to cross-domain 
querying the linked data produced from the integration of external and internal sources, 
and (3) a knowledge base for graph mining algorithms on the right side. The produced 
generalized graph patterns are injected into further machine learning tools as additional 
ontology-based features to make their results more intelligible. As the results of this 
ontology supported system are intended to be used by anyone in the dairy community, 
it is important the compliance to international standards in the field, in particular to the 
ICAR guidelines and CDN’s genetic vocabularies.

Precision dairy farming is about optimizing dairy cattle performance indicators that 
reflect complementary aspects of the dairy process. In the long term, DCPO will embody 
knowledge about six perspectives of the dairy process: breeding (pedigree), genetics, 
production and milk quality control, environment, health and nutrition. Currently, it 
encompasses only the first four, corresponding to the datasets and data dictionaries 
made available as departing point.

The ontological analysis for DCPO has been guided by domain experts, experienced 
data scientist, and the available structured description of the dairy data recording 
procedures within the ICAR documentation. This documentation was informative 
enough as to provide a core set of terms that was gradually enriched with lower-level 
concepts and properties and aligned to an upper ontology to provide a foundational 
theory.

Figure 1. Global project architecture.

 

 

Requirements

Scope

Ontological analysis 
and design
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To take advantage of the available resources mentioned before, a bottom-up approach 
was performed. To identify the key entities of the ontology, we extracted the names of 
our datasets and their columns from available data dictionaries and matched them to the 
terms defined in the ICAR documents, so that we could link them to the standardized 
dairy domain terminology, Figure 2 illustrates this process. On the left, the candidate 
term Lactation is retrieved from the dataset name, and it’s matched to the terms defined 
in the ICAR document, where an occurrence is found. In the matched definition, the 
related candidate terms/phrases Calving and DryPeriod are retrieved. Additional 
examination of the document identifies another candidate term ProductionPeriod and 
its relationship to the other terms are inferred (e.g. hasLactation).

In defining hierarchies (i.e., classes and properties) we usually provide an abstract level 
to factor out the common characteristics of the elements in a particular module, and 
one or more specialization levels below which inherit and refine these characteristics. 
This facilitates the management of the overall ontology architecture and inter-module 
connections, its extension, readability, and better grouping of similar entities. In some 
cases, the generalization process leads to the finding of ontology patterns (OP) that can 
then be reused across the ontology to provide modularity. Moreover, this decomposition 
of the ontology in abstraction layers allow the discovery of generalized graph patterns 
(GGP) from data, as we will see in the next section.

One such OP is the ascertainment pattern shown in Figure 3 (left). In detail, a target, 
Thing, undergoes an assessment procedure of some kind or Ascertainment, about 
some DeterminableQuality of the target and it is quantified by some measure or 
DeterminateQuality. This OP abstracts different ways of acquiring certain knowledge 
concerning the target entity. Under the umbrella of this OP, one finds such dairy farming 
activities as milk composition tests, genetic evaluations, and cow conformation scoring, 
to name a few. For instance, genetic evaluation is depicted on the right of  Figure 3.

In searching for abstractions and OPs, we combine the bottom-up strategy of 
generalizing from concrete entities with the top-down strategy of making them 
specializations of a foundational ontology, the Basic Formal Ontology (BFO) from the 
OBO Foundry in our case. This greatly simplifies the integration of the two ontologies 
as the specialization approach gradually refactors the DCPO using BFO as a design 
guide, trying to align our entities to entities in the upper ontology. This has the effect 
of forcing our design to comply to the upper ontology, and thus absorb its principles. 
As an example, a genetic trait is any measurable characteristic of a cow that is 
heritable with some probability. Using the bottom-up strategy, we found a hierarchy 
of trait classes associated with concrete measures. From the top-down perspective 

Figure 2. Bottom-up analysis: From dictionary names, via ICAR terms, to DCPO 
entities.
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we understand that traits are BFO:Quality specializations. So, we created the classes 
DeterminableQuality and DeterminateQuality for general use in our patterns, which 
are both specializations of BFO:Quality and generalizations of our concrete classes 
for traits and measures correspondingly (see Figure 3).

This strategy enabled the rapid design of a coarse first model made of candidate 
classes and properties. We chose OWL since it is a standard Semantic Web technology 
built on top of RDF, a data format designed for interoperability, and provides valuable 
inference capabilities allowing ontology consistency to be checked with a reasoner, thus 
greatly reducing the production effort for the formal ontology artifact. Domain experts 
challenged this first model/design. This strategy enabled an analysis/design process 
following an iterative feedback loop (refining, updating, and adding new entities) with 
domain experts regularly challenging the latest changes.

The ontology has been modularized according to the different aspects of the dairy 
process covered at this stage: core, production and quality control, testing, breeding, 
and genetic evaluation. In the following paragraphs we summarized the ontology 
description as depicted in Figure 4. Notice the use of italics to highlight ontology entities 
where classes begin with an uppercase letter and properties with a lowercase one.

At the core of the ontology, the central entity Bovine, factors out common characteristics 
of main actors: Cow and Bull, regardless of their particular role in the process or their life 
stage, allowing these concrete specializations to refine a common base by inheritance. 
Bovine is derived from Animal, used to enable extensions of the DCPO to other dairy 
species. A parent property and its specializations femaleParent and maleParent are 
defined on Animal to allow the construction of a parentage graph tracking the pedigree 
of each animal, with further specializations dam and sire for the cows and bulls involved 
in breedings, respectively.

The productive periods of a cow have three main stages: Calving, representing the 
birth of a new calf; Lactation, the milk production periods the cow has went through 
and DryPeriod, the time the cow is not producing milk. During Lactation, the Milking of 
cows undergoes QualityControl whose instances represent the different milk quality 
checkpoints performed during lactation. Quality control performs MilkSampling to 
produce a MilkSample that isAnalyzedBy a CompositionTest. During MilkSampling 
a QuantificationTest is performed to measure the milk yield . A Breeding between 
a breedingDam and a breedingSire engenders a new Calving producing a newborn 
Bovine. Each Bovine, undergoes a GeneticEvaluation that determines the geneticMerit 

Figure 3. The OP Ascertainment (left) and its instantiation as GeneticEvaluation 
(right).
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of the animal on several Traits, to assess its value (a full description is available 
through CDN). Finally, a Herd entity is associated with the concept of HerdMembership, 
representing the fact that a cow belongs to a herd.

As a preliminary evaluation of the DCPO, we adopted a query-based approach. The 
motivation behind was two-fold: (1) assess the practical usability of the populated 
ontology and (2) ensure the correctness of applied data transformations. Led by 
domain experts, we implemented SPARQL queries that reflect the typical questions 
experts might ask, e.g., to estimate the impact of cow management w.r.t to genetic 
potential. An example query is to compute average values on day 305 estimates for 
milk, protein, and fat for cows, herds, and regions for both production metrics (i.e., 
milk, fat, and protein) and estimated genetic potential (i.e., estimated breeding values). 
By substracting — relative to average — values for production and genetics, rough 
estimates of the quality of management practices for cows and herds are computed.

Structural regularities, or patterns, in the data can provide useful insights as to the 
general trends it reflects: They may lead an expert to discover unknown phenomena 
or, more realistically, to confirm an already formulated hypothesis. Therefore, such 
regularities, are worth mining and presenting to experts for an in-depth examination.

The immediate benefit of using a DO as vocabulary for pattern graphs is to enable 
the shared structure in data graphs to be explicitly described at the conceptual level, 
even though it may manifest in diverging ways at the data level. In other words, 
isomorphic graphs on the data level with diverging vertex and edge labels, which are 
thus, seemingly, unrelated, can become identical once their respective labels are 
generalized to the respective classes and generic properties from the DO. 

Figure 4. Dairy ontology and its modular desig.
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Here, our DCPO and its instances act as a dual graph model where the former is used 
as a blueprint while the latter acts as the actual data to explore and analyze. Another 
way to picture it is to consider it as meta-data to formulate relevant hypothesis whereby 
graph data is used to (in-)validate such hypothesis.

As an illustrative example, Figure 5 represents a data graph and a matching pattern that 
refers to DCPO. The pattern —found in an ad-hoc manner— was deemed potentially 
useful by our experts. It reflects the fact that a number of cows culled for reasons that 
were not under farmer’s control (involuntary culling) had, prior to that event, at least 
one lactation with two quality controls, one of which indicates worrisome values of 
somatic cells. Such a co-occurrence is perfectly plausible as increased somatic cell 
counts are major signals for mastitis (inflammation of the udder tissue). Consequently, 
larger patterns contextualizing recurrent health issues could very well reveal the actual 
trigger for the involuntary culling. Therefore such patterns deserve to be investigated 
so that the underlying phenomena could be better understood and, if necessary, more 
closely monitored.

In the ontology, we describe what things exist in the domain, their attributes, and 
relationships. In general, this knowledge is external to animal experts, it is mostly 
established knowledge about the dairy process and its validity is not expected to change 
with the addition of new knowledge. But exists also internal knowledge developed 
by local experts. This internal knowledge usually expresses conditions on the state 
of individuals under which certain phenomena occurs. We use rules as knowledge 
representation in this case. 

An example of this situation is the diagnosis of positive or negative effects of nutrition, 
management, and environmental factors in herds according to their bulk tank milk 
component profiles. The specification of the intervening entities (herd, milk profiles), 
their attributes (the values of the different measures for each profile component) and 
the relationships between them are expressed in the ontology (see Figure 6).

Animal experts have determined associations between extreme values of profile 
measures and different anomaly situations in herds. To express this associations, we 
define rules that use the vocabulary in the ontology. In this way, the ontology, rules, and 
a reasoner constitute a decision support system (DSS). Figure 6 shows an example 
of such rules: when a profile record is introduced in the ontology as an instance of 
a profile, the reasoner tries to match rule antecedents with instance data, if a match 
holds, the rule triggers and its consequent is executed, in this case it reclassifies the 
profile as a profile specialization.  

Figure 5. Example pattern (right) from a data graph (left), both supported by the dairy ontology.
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We reflect here on our efforts on the design and implementation of DCPO, unifying 
several key aspects of dairy production. A major challenge we faced was the trade-off 
between plausible domain modeling and support for expressive knowledge discovery 
tools. At the current stage, it proved possible to reach both goals within a unique 
ontlogy. Next, we shall look at how to exploit ontology design patterns [18] and given 
we conform to the BFO, we envision an integration to the OBO (www.obofoundry.org) 
ontologies, with alignments to the relevant ontologies of the library. In longer run, we 
shall look at enhancing the data-centered ontology with knowledge discovered from 
the data by mining tools. 
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Cattle breeding has been data driven since decades ago, with central data storage 
and data processing. Breeding goals are including more and more trait complexes 
and more and more diverse data sources have been recorded over time. Pedigree 
and genomic information in combination with a variety of phenotypes for dairy, beef, 
functional and conformation traits are available. The increasing awareness and need 
for transparency in regard to health and welfare has led to further documentation and 
data sources as well as the further exploration of existing data sources, e.g. DHI with 
mid-infra-red spectra. The need to increase efficiency has raised interest in feeding 
and management information and technological advances are revolutionizing the dairy 
sector with a large amount of novel data sources. One of the aims in the D4Dairy 
project is to explore the joint use of diverse data in combination with machine learning 
methods disease risk prediction and prevention.

Based on information from 165 farms with data from different life domains such as milk 
recording, genetic, housing, nutrition, management, climate and health , algorithms 
to predict the disease risk for lameness, acute and chronic mastitis, anestrus, ovarian 
cysts, metritis, ketosis (hyperketonemia), and periparturient hypocalcemia (milk fever) 
have been derived. The results are encouraging, as, for example lameness can be 
predicted with high sensitivity and specificity (F1=0.74). Using three machine learning 
approaches of varying complexity (from logistic regression to gradient boosted trees) 
it was shown that to some extent the complexity of the algorithm can compensate for 
less diverse data. Presently the studies are ongoing with focus on elaboration of a 
data-driven decision support tool for early warning to reduce the disease risk.

Keywords: Big data, disease risk prediction, data integration.
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Due to technological progress a huge amount of different data is generated in dairy 
operations. Data and central data processing have been a main pillar for breeding 
for decades. Breeding based on data and central data processing has started more 
than fifty years ago. Data are generated from many different data sources on and 
off the farm. As breeding goals have expanded in recent decades, interest in linking 
various existing data sources has increased. These include traditional data from 
performance recording or linear scoring of animals, as well as veterinary diagnoses, 
data from claw trimming or data from laboratories. Since about 15 years ago, genomic 
information based on single-nucleotide-polymorphisms (SNP) is used in breeding and 
more and more genomic information is available. The advances from research on 
mid-infrared-spectra (MIR) show potential to use this information for early warning of 
diseases or optimization of feeding. The advances in sensor technology is another 
big step forward. More insight into animal physiology and behavior is possible, as well 
as more detailed information from the milking process. Feeding information, sensors 
measuring the housing climate in the stable as well as other information describing 
environmental conditions offer new possibilities for developing decision support tools 
to predict an animal’s risk of disease. 

Digitization offers many opportunities to develop new tools as well as to improve the 
existing approaches in high-efficiency dairy farming. Nevertheless, the challenge very 
often is the lack of standardization and linkage of data. 

In the project D4Dairy, a highly integrated dataset with data from the various data 
sources mentioned above was created and a holistic approach for prediction of 
diseases was developed. 

The research questions are based on the assumption that digitization has the potential 
to significantly improve early detection and prevention of animal diseases. With our 
research, we wanted to answer to main research questions  

•	 Do complex integrated datasets enable new approaches to the detection of animal 
diseases or improve existing ones.

•	 Do advanced methodological approaches improve prediction performance?

The prerequisite to study these research questions is an integrated dataset fulfilling 
different requirements with regards to data quality and quantity as well as the 
methodological approaches for the analyses of large data sets. 

The dataset used for this study was an existing data set from the project “Efficient 
Cow” (Egger-Danner et al., 2017) consisting of data from 166 farms, with 142 different 
variables, 6,519 cows and 45,944 observations. In addition, data from the national 
disease registry and national weather service were combined with the existing data 
set. The data set included data on diagnoses, housing, breed, age, management, 
conformation, feed, breeding values, lactation stage, environment and milk 
performance. The study concentrated on the eight most frequent diseases lameness, 
acute and chronic mastitis, anestrus, ovarian cysts, periparturient hypocalcemia, 
ketosis, metritis (Lasser et al. 2021). 

In order to get more insight into the development of disease, as it is often an interaction 
of multiple factors, farm-risk-profiles were derived (Matzhold et al. 2021). A UMAP 
(Unifold Manifold Approximation and Projection) algorithm for dimension reduction 
and to identify pertinent factors was used. The HDBSCAN algorithm was used to 
identify clusters of farms with similar attributes. With multivariate regression models 
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the impact of individual risk factors was analysed. Each farm cluster identified a farm 
as a combination of environmental factors and management practices. 

To predict the disease risk, three methods with increasing complexity were studied. 
The baseline was a logistic regression approach.  In addition, two more complex 
machine learning approaches (random forests and gradient boosted trees – XGBoost) 
were employed to assess the improvements in disease prediction performance with 
increasing algorithm complexity. The methods were applied on two different datasets: 
A full dataset including information from the “Efficient Cow” project and weather 
information, and a reduced dataset that was comprised of data that is routinely collected 
by performance recording organisations. 

Figure 1 shows the farm-risk-profiles for the eight different diseases (Matzhold et al. 
2021). Cluster 1 is characterized by the lowest prevalence of anestrus, ketosis, chronic 
mastitis, metritis and ovarian cysts. These are mainly farms in higher altitudes and 
with access to pasture. Cluster 4 showed the highest prevalence in anestrus, acute 
mastitis, lameness and ovarian cysts. These farms are characterized e.g. by less 
individualized feeding. 

In Table 1 the F1-Score, Precision and Recall for predicting the eight diseases are 
shown for the logistic regression applied on the full dataset (Lasser et al., 2021). 
Precision is defined as probability that a predicted disease will actually be diagnosed, 
recall is the probability that an actual disease was correctly predicted. The F1-Score 
is the harmonic mean of precision and recall. Prediction works well for anestrus and 
lameness, with an F1-Score of 0.74. Prediction performance is worst for acute and 
chronic mastitis, with F1-Scores of 0.48 and 0.51, respectively.  It has to be considered 
that the dataset collected did not include specific environmental and management 
factors related to mastitis e.g. hygiene measures, but it included specific information 
on housing and feeding with potential impact on lameness.

Table 2 shows the feature category importance for different diseases. The impact 
of the breeding values is rather small whereas environmental factors like feeding or 
housing show a high impact. 

In Figure 2 precision and recall for the three different methods (logistic regression, 
random forest and XGBoost) and two datasets are presented. More complex methods 
perform better, especially when using the restricted dataset. 

The studies on disease prediction using the “Efficient Cow” dataset showed promising 
potential of disease risk prediction using integrated datasets. The challenge remains 
the collection and integration of a data set with such diverse features. 

In the next step the different approaches and methods will be applied on an even 
more complex and integrated dataset including additional data from daily milking and 
animal based sensors. The aim of the continued research is the development of a 
data-driven decision support tool providingearly warnings and enabling interventions 
before diseases fully emerge. 
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Figure 1. Farm-risk-profiles (Matzhold et al. 2021).

Figure 2: Precision and recall from different methods applied on 2 different datasets (Lasser et al. 2021).

 
 

 
 

Table 1. Logistic regression results (F1-Score, Precision, Recall) based on the 
“Efficient Cow” dataset (Lasser et al., 2021). 
 
 

Disease 

Anestrus 0,739 0,763 0,729
Lameness 0,737 0,780 0,700
Ovarian cysts 0,616 0,675 0,543
Ketosis 0,521 0,651 0,437
Metritis 0,549 0,677 0,490
Hypercalcemia 0,482 0,576 0,420
Chronic mastitis 0,514 0,635 0,445
Acute mastitis 0,479 0,656 0,395

F1 Score Precision Recall

 
 
 
 
Table 2. Feature category importance (Lasser et al., 2021). 
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Table 2. Feature category importance (Lasser et al., 2021). 
 

Feature category Anestrus Lameness 
Ovarian 

cysts Ketosis Metritis
Periparturient
hypocalcemia

Chronic 
mastitis 

Acute 
mastitis

Age 4,9 36,7 2,8 4,7 2,2 28,4 7,1 11,3
Breed 1,8 2,6 1,2 1,5 2,4 0,4 0,3 2,5
Breeding values 3.0 2,4 2,7 1,7 2,7 1,9 4.0 2,5
Diagnosis source 16.0 15,6 29,6 11,9 33,9 7,1 18,9 16,3
Environment 14,3 4,9 16,5 10,5 15,6 13,8 19,8 10,1
Feed 27,4 11,8 17,5 22,4 12,7 7,5 18.0 19,9
Housing 11,5 12,9 11,3 19.0 15,6 5.0 7,4 13,6
Husbandry 9,1 5.0 4,5 8,8 7.0 2,7 6,4 6,4
Lactation stage 2,7 1,2 4,7 16,1 1,8 28,9 0,7 1,3
Milk indicators 5,9 2.0 3,6 0,7 2,2 1,4 10,4 12,5
Physical indicators 3,6 4,8 5,7 2,7 3,9 3.0 7,1 3,7

1Cumulative permutation feature importance contributions for the eleven feature categories. Values are given in % of the sum 
of all feature importances for a given disease. 
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Dairy herds continuously generate on-farm data that have a high potential for 
decision making support. However, variability among herds can be high and it can 
be, therefore, challenging for dairy producers and extension services to interpret farm 
records and identify best management practices. In this observational study, we used 
DHI data to identify the main factors explaining the overall herd performance for 71 
commercial Holstein herds in New Brunswick, Canada. A machine learning approach 
was used to generate high-level recommendations as well as detailed herd-specific 
recommendations. Enrolled farms were equipped with a parlour (n = 31), pipeline (24) or 
automatic (16) milking system. Herd performance records from September to December 
2020 were assembled from a DHI database and included 71 indicators related to 
production, reproduction, health, and longevity. Herds were segmented based on their 
overall herd performance using hierarchical clustering based on principal components. 
The principal components were used primarily as pre-processing step to de-noise the 
data and to balance the influence of the similar DHI records. In-dept analysis of clusters 
was conducted using decision tree induction with the aim to generate an interpretable 
on-farm decision making tool. Three herd clusters were identified and consisted of 
low overall herd performance across all DHI indicators (Cluster 3; n = 17), a medium 
overall herd performance but high longevity (Cluster 1; n = 36), and high overall herd 
performance but with a concomitant low longevity (Cluster 2; n = 18). Decision tree 
induction further allowed to identify the most important DHI indicators explaining the 
adherence of a herd to one of the three clusters. This ultimately allowed to establish 
high-level recommendations and visualize which performance indicators a herd might 
want to focus on to improve overall herd performance. For instance, low performing 
herds were observed to be mainly driven by a low reproduction performance. In addition, 
single predictions of the decision tree algorithm were fitted with a local interpretable 
model. This latter approach allowed to add interpretability to the decision tree model 
and generate dynamic herd-specific recommendations for each farm. In conclusion, 
the results suggest that mining DHI data can give a valuable insight into best herd 
management practices and can be used to highlight opportunities for improvements. 

Keywords: Decision support, DHI, artificial intelligence, decision tree.
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Dairy herds continuously generate on-farm data that have a high potential for decision 
making support. However, variability among herds can be high and it can be, therefore, 
challenging for dairy producers to interpret farm records and identify best management 
practices. In addition, on-farm data from dairy herd improvement (DHI) records are 
typically complex, incomplete, variable over time, and correlated to each other. With 
such datasets, traditional inferential statistical methods often perform poorly (Heald 
et al., 2000). A machine learning approach might be more suitable for DHI data as 
these types of algorithms provide more flexibility with incomplete data and generally 
handle better interactions among predictors and non-linear relationships (Abbot, 2014). 
Unsupervised machine learning algorithms such as clustering are typically used to find 
hidden patterns in complex and large datasets, whereas supervised machine learning 
algorithms are typically used for generalized predictions. In addition, machine learning 
is particularly suitable for field applications as it can be implemented and automated for 
field applications (Dominiak and Kristensen, 2017). As such, a combined unsupervised 
and supervised machine learning approach was used in the present study to find 
groupings in data originating from the dairy herd population in New Brunswick, Canada, 
and to identify management practices of high performing dairy herds as opposed to other 
dairy herds for decision making support to improve herd performance and profitability. 

A total of 89 dairy herds across New Brunswick for which DHI records are routinely 
collected were initially included in the study. Only herds predominantly composed of 
Holstein cows (71 herds) were considered for further analysis as herd management 
was likely influenced to a large degree by the breed. Among these, 31 herds had a 
parlour, 24 herds had a pipeline, and 16 herds had an automatic milking system. Each 
participant received free access to the Lactanet service for transition management 
(Transition Cow Index; Nordlund, 2006) and subclinical ketosis screening (Foss, 
2009) during the entire length of the study period which were used as input data in 
the prediction model. 

Test day records were collected and included 12-month average data on herd 
demography, production, longevity, and reproduction based on the last test records 
registered between September and December 2020. Data was cleaned to remove 
implausible values and outliers by removing the 1st and 99th percentile. Originally 71 
variables were considered for data analysis. Variables missing at random were imputed 
using a random forest approach as described in van Buuren (2012), which generally 
handles well complex and inter correlated data in the presence of missing cases 
(Tang and Ishwaran, 2017) as it the case for DHI data. Data not missing at random 
(bodyweight, milk urea nitrogen records) were omitted from the analysis. 

Management practices were collected through an online survey administered by 
Lactanet technicians and advisors. The survey was previously developed and applied 
to collect data on approximately 2300 Quebec dairy herds with questions pertaining to 
the building, housing, feed bunk and feeds, bedding, cleaning, milking system, footbath, 
hoof trimming, exercise and pasture, calving, and drying off management (Lactanet, 
2021). Among the 71 Holstein herds in New Brunswick, 42 completed the survey and 
were thus considered for analysis. Amongst these, 23 herds had a parlour, 22 herds 
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a pipeline, and 12 herds an automatic milking system. The survey was completed 
between March 2020 and April 2021. 

To identify the best management practices, herds were clustered into similar groups 
based on the overall herd performance using their respective test day DHI records by 
means of agglomerative hierarchical clustering on principal clustering (HCPC) using 
the FactoMinerR package in R (version 3.5.0; R Foundation for Statistical Computing, 
Vienna, Austria) of Le et al. (2018). Computation of the principal components was 
thereby done as pre-processing step to de-noise the data and to balance the influence 
of several groups of variables. 

Differences in the DHI records among the identified clusters were first evaluated 
through a mixed effect linear regression with cluster considered fixed and milking type 
considered random using the lmerTest package (Kuznetsova et al., 2017). 

The cluster output was investigated in more detail through a decision tree approach 
with the aim to predict the adherence to one of the three groups with the DHI indicators 
and identify the most meaningful indicators explaining the difference between the high, 
medium, and low performant herds. Decision tree induction was conducted through a 
CART classification tree as described in Breiman et al. (1984) using the caret modelling 
package workflow of Kuhn (2008). This approach allows to compute a tree-structured 
classification containing a collection of decision rules (represented by the tree branches) 
and cluster predictions (represented by the terminal node of a branch). Its simple and 
interpretable structure as well as its ability to compute decision rules in the presence 
of missing values using surrogate variables (i.e., substitutes for the primary splitter of 
a node when the primary splitter is missing; Rokach and Maimon, 2005) makes it an 
interesting tool for future field applications. 

Prior to applying a decision tree algorithm, collinearity was checked to remove variables 
with a Spearman correlation coefficient above 0.60 as multicollinearity could lead to 
over-fitting, resulting in 19 final variables. The optimal model hyperparameters for the 
tree size (complexity parameter) were evaluated through a random search using a 
5-fold cross-validation. 

The global variable importance scores, that is the variables contributing most to 
the model development, were extracted based on the sum of the reduction in the 
loss function (information gain) attributed to each variable at each split. The model 
response was illustrated through an alluvial diagram for the variables with the higher 
global importance score. The variables were thereby normalized to a mean of 0 and 
a standard deviation of 1. Additional model agnostics based on the LIME approach 
(Local interpretable model-agnostic explanations; Ribeiro et al., 2016) were run to 
extract local variable importance scores, which allow to interpret the model outcome 
for each participating herd. 

The survey data were analysed using a Fisher’s test on the cluster output. The 
Fisher’s test was preferred over the more commonly used chi-squared test due to the 
small sample number and failing to comply with the strict requirements of the latter 
(e.g., expecting a frequency never smaller than 1 and a frequency of 5 or more for at 
least 80% of the output cells). A list of promising management practices known to affect 
herd performance has been elaborated and presented to the participating producers. 
However, as the findings were statistically inconclusive due to the low response rate 
and large variability observed among the participating herds leading to an overall non-
significant P-value (> 0.10), results from the survey are not shown here. 

Data analysis
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Each participant received a customize report with benchmarks for DHI records 
previously identified using decision tree induction as well as for some relevant 
management practices via a parameterized R markdown report (version 1.1.; Allaire 
et al., 2019) and were directly sent to the respective participant from the RStudio user 
interface via the utility package mailR (version 0.4.1; Premraj, 2015). 

Three cluster were identified based on the herd DHI records and labelled as high, 
medium, and low overall herd performance. A detailed cluster description is shown in 
Table 1 for variables that differed significantly (P < 0.05) among clusters. The herd size 
did not differ significantly among the clusters (P = 0.076) but was somewhat higher 
for the Medium performance cluster due to a higher number of herds equipped with 
a milking parlour. The Low performance cluster did not contain any herds equipped 
with an automatic milking system. However, herds pertaining to the High performance 
cluster were not driven mainly by a specific milking system. 

The cluster analysis suggested that the High performing herds were also the herds with 
the highest milk performance, milk value (mainly based on milk yields and components) 
and genetic potential. The somewhat higher genetic potential for energy‑corrected milk 
for the Medium performant herds implies that some herds in this cluster do not exploit 

Results and 
discussion 

Dairy herd 
improvement data

Table 1. Cluster description for overall herd performance. 
 

  Cluster  
Variable High Medium Low 
Number of herds 18 36 17 
Herd size (median) 75.2 97.2 75.0 
Milking system (number of herds)    

Automatic 6 10 0 
Parlour 6 17 8 
Pipeline (tie stall) 6 6 9 

Production1    
kg ECM 10,996 9,909 8,468 
kg fat 442 397 339 
kg protein 361 328 277 
Milk value (CAN$) 8,032 7,188 6,127 
Genetic index for ECM 414 440 255 

Reproduction and health1    
Transition Cow Index2  426 260 −173 
Calving interval 405 403 451 
Days to first breeding 82 81 100 
Age at first calving 25.6 25 30 
Days dry 67 63 71 
% cows with SCC > 200,000 12.4 14.8 18.4 

Longevity1    
% involuntary culled 29 16 23 
% cows dead 4.7 2.8 5.3 
% cows left 44 30 35 
% cows left at 60 DIM 8.3 5.2 7.3 
% cows left for reproduction 8.8 4.6 5 
% cows left for feet problems 3.7 1.9 4.2 

 
 
 



77

ICAR Technical Series no. 26

Warner et al.

their genetic potential to the fullest as suggested by their lower milk performance and 
milk value. In addition, the High performing had the best transition cow management 
and a high reproduction performance. This further highlights the importance to pay 
attention to the non-producing cows and heifers within a herd. Nonetheless, these 
herds had a high involuntary culling rate and deficiencies in early lactation, in particular 
compared to the Medium performance cluster indicating a potential for improvement. 

Using a decision tree approach, the most important variables were identified that 
explain the adherence of a herd to either the High, the Medium and Low performing 
herd cluster (Figure 2). The top performing herds could be predicted via a low calving 
interval, low age at first calving, high involuntary culling rate, high energy-corrected 
milk yield, high turnover rate and percentage of cows left, and an excellent transition 
cow management. The decision tree suggested that the contribution of the genetical 
potential was low overall suggesting that some lower performing herds might not fully 
exploit their genetic potential. 

Using a model-agnostic approach, the model predictions were investigated in more 
detail. For a randomly selected herd (herd 61 in Figure 2), we noticed a high calving 
interval, suboptimal transition management and low turnover rate which were in line 
with other Low performing herds. However, its genetic potential was overall within the 
top 50% herds and thus considerably higher than that of its peers, suggesting that 
herd 61 does not fully exploit its high genetic potential. This approach allows therefore 
to investigate the decision rules for each individual herd and can help with decision 

Figure 1. Model response, as shown by an alluvial diagram with predicted cluster adherence as 
affected by the most important predictors ranked by their variable importance score. Nodes on 
the left denote the Medium (1), High (2), and Low (3) performance cluster; nodes for predictors 
with respective means were fixed to five nodes based on the frequency distribution (y-axis).  
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making by highlighting possible similarities or discrepancies among herds within the 
same cluster and by pinpointing to potential deficiencies for a producer to focus on. 

The findings presented here suggest that mining DHI data can give a valuable insight 
into best herd management practices and can be used to highlight opportunities for 
improvements. DHI records have a high potential for decision making support. Due 
to the type of records at hand, a more flexible approach using machine learning is 
recommended to deal with the large data volume and variety. Clustering allowed to 
identify 3 main herd clusters based on the overall herd performance using DHI data. 
High performing herds differentiated themselves from low performing herds mainly by 
adopting an optimal transition management, overall good reproduction performance and 
high attention given to the non-producing animals despite a potential for improvement 
in early lactation management. Decision tree induction further allowed to identify the 
most important DHI indicators explaining the adherence of a herd to one of the three 
clusters. This ultimately allowed to establish high-level recommendations and visualize 
which performance indicators a herd might want to focus on to improve overall herd 
performance. A local interpretable model fitted to single decision tree predictions 
allowed to add interpretability to the decision tree model and help with decision making 
by highlighting specific possible deficiencies within a herd. 

Figure 2. Contribution of variables of a randomly selected herd 
pertaining to the Low performing cluster (Cluster 3) based on a 
model agnostic approach.  

Conclusion 

 

 
 
 



79

ICAR Technical Series no. 26

Warner et al.

This project was funded by Agriculture and Agri-Food Canada (Ottawa, ON, Canada) 
and Milk 2020 (Sussex, NB, Canada) through the Canadian Agricultural Partnership 
joint research program. 

Abbott, D. 2014. Applied predictive analytics: Principles and techniques for 
the professional data analyst. Wiley and Sons, Indianapolis, IN. 

Allaire, J.J., J. Horner, Y. Xie, V. Marti and N. Porte. 2019. markdown: 
Render Markdown with the C Library ‘Sundown’. R package version 1.1. https://
CRAN.R-project.org/package=markdown. 

Breiman, L., J.H. Friedman, R.A. Olsen and C.J. Stone. 1984. 
Classification and regression trees. Wadsworth and Brooks, Monterey, CA. 

Dominiak, K.N. and A.R. Kristensen. 2017. Prioritizing alarms from sensor-
based detection models in livestock production - A review on model performance 
and alarm reducing methods. Computers and Electronics in Agriculture 133: 46–67. 
https://doi.org/10.1016/j.compag.2016.12.008. 

Foss. 2009. Foss Application Note 35. MilkoScan FT+ Ketosis Calibrations. 
Foss, Hillerød, Denmark. 

Heald, C.W., T. Kim, W.M. Sischo, J.B. Cooper and D.R. Wolfgang. 2000. 
A computerized mastitis decision aid using farm-based records: an artificial neural 
network approach. Journal of Dairy Science 83(4): 711–720. https://doi.org/10.3168/
jds.S0022-0302(00)74933-2. 

Kuhn, M. 2021. caret: Classification and Regression Training. R package 
version 6.0-88. https://CRAN.R-project.org/package=caret. 

Kuznetsova, A., P. B. Brockhoff and R.H.B. Christensen. 2017. lmerTest 
Package: Tests in linear mixed effects models. Journal of Statistical Software 
82(13): 1–26. doi: 10.18637/jss.v082.i13. 

Lactanet, 2021. Portrait des fermes laitières québécoises en matière de 
logement et de gestion des animaux. Lactanet: https://lactanet.ca/wp-content/
uploads/2022/01/brochure_portrait-ferme-qc_021v11.pdf (accessed on May 2022). 

Le, S., J. Josse and F. Husson. 2018. FactoMineR: An R package for 
multivariate analysis. Journal of Statistical Software 25: 10.18637/jss.v025.i01. 

Nordlund, K., 2006. Transition Cow Index. In: Proceedings of the 39th 
Annual Conference of American Association Bovine Practitioners, St. Paul, MN, 
USA, 20–24 September 2006; American Association of Bovine Practitioners, 
Ashland, OH, USA, p 139–143. 

Premraj, R. 2015. mailR: A Utility to Send Emails from R. R package version 
0.4.1. https://CRAN.R-project.org/package=mailR. 

Ribeiro, M.T., S. Singh and C. Guestrin. 2016. Why should I trust you? 
Explaining the predictions of any classifier. arXiv:1602.04938 [cs.LG]. 

Rokach, L. and O. Maimon. 2005. Decision trees. In: Data Mining and 
Knowledge Discovery Handbook, Maimon, O. and L. Rokach (Editors), Springer, 
Boston, MA, p 165–192. 

Acknowledgement 

References 



80

Dairy improvement and machine learning 

Proceedings ICAR Conference 2022 Montreal

Tang, F. and H. Ishwaran. 2017. Random forest missing data algorithms. 
Statistical Analysis and Data Mining 10 : 363–377. https://doi.org/10.1002/
sam.11348. 

van Buuren, S. 2012. Flexible imputation of missing data. CRC Chapman 
and Hall, Boca Raton, FL. 



81

ICAR Technical Series no. 26

Prediction of grass-based diet from indirect traits 
using milk MIR-based predictors to assess the feeding 

typology of farms

H. Soyeurt1, C. Gerards1, C. Nickmilder1, S. Franceshini1, F. Dehareng3, D. Veselko4, 
C. Bertozzi5, J. Bindelle1, N. Gengler1, A. Marvuglia6, A. Bayram6,7 and A. Tedde1,2 

1TERRA, Gembloux Agro-Bio Tech, University of Liège, Passage des déportés 2, 5030 
Gembloux, Belgium  

Corresponding Author: hsoyeurt@uliege.be 
2FNRS, Rue d’Egmont 5, 1000 Brussels, Belgium 

3Walloon Agricultural Research Centre, Valorisation of Agricultural Products, Chaussée 
de Namur 24, 5030 Gembloux, Belgium  

4Comité du lait, Route de Herve 104, 4651 Battice, Belgium 
5Walloon Breeding Association, Rue des Champs Elysées 4,5590 Ciney, Belgium

6Luxembourg Institute of Science and Technology (LIST), Rue du Brill 41,4422 Belvaux, 
Luxembourg  

7Computational Sciences, Faculty of Science, Technology and Medicine, University of 
Luxembourg, Avenue de l’Université 2, 4365 Esch-sur-Alzette, Luxembourg 

Grassland provides access to a local and low-cost food resource usable by livestock. 
Today, for some brands of dairy products, one of the specifications asked the farmers 
is to put their cows on pasture for a minimum period or feed their cows mainly with a 
grass-based diet. But this constraint is rarely verified. However, this kind of feeding has 
a fingerprint in the milk. So, this work aims to develop a method predicting indirectly the 
level of grass in the cows’ diet using features estimated from milk mid-infrared (MIR) 
spectrometry. More than 3 million records were collected between 2011 and 2021 on 
2,449 farms. Those included the fat, protein, lactose, and urea contents estimated by the 
spectrometers and 34 MIR-based predictors reflecting the milk fatty acid composition, 
the protein fraction, the minerals, and the lactoferrin content. As no grazing calendars 
and detailed feed composition were available at large scale, the innovative aspect of 
this work will consist of estimating the grass-based diet using a trait defined from the 
month of analysis of bulk milk. Indeed, in Wallonia, nearly all herds are on pasture 
between the beginning of sprint and the beginning of autumn. The data were collected 
between 2019 and 2020. The calibration set used 80% of the farms chosen randomly 
(345,223 records). The remaining ones were used to validate the model (85.069 
records). The direct prediction of test month from a Partial Least Square discriminant 
analysis (PLS-DA) was poor (0.40). However, a hierarchical clustering applied to those 
obtained predictions revealed a GRASS group composed of predictions done in June, 
July, August, and September. So, a second PLS-DA was realized to discriminate the 
GRASS group. A better accuracy was good (0.88). Then, the probability of belonging 
to the GRASS modality was used to observe the feeding typology of the farm. The 
evolution of this probability through the year was the one expected with an increasing 
value from April and a constant decrease after summer. The interval between this 
increase and decrease could be used to count the number of days spent by cows on 
pasture and the intensity of this change can be studied discriminate different feeding 
strategy. In conclusion, using the MIR analysis done for the milk payment by dairy 
companies, it is feasible to detect the presence of grass in the cow diet and estimate 
potentially the number of days spent by the cows on pasture during a year.  
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In the Southern part of Belgium, grassland represents a large part of the useful 
agricultural surface. Permanent grasslands represent 42.1% of this surface (309,180 ha) 
and temporary grasslands represent 5% (State of the Walloon Environment, 2020).

Grassland has an important place in our landscape and fulfils many roles. But grassland 
provides also access to a lower cost feed resource, requiring very little supplementation 
for ruminants (Kolver, 2003). Therefore, producing milk from pasture makes sense. 
Many specifications for milk and protected designation of origin products require farmers 
to have a minimum period of grazing for their cows. For example, in France, CANDIA 
recommends an average of 150 days of grazing per year and for at least 6 hours 
per day. The “Lait de pâturage” label is based on the same rules but also requires a 
minimum grazing area of 10 ares per animal. Finally, the “Grand Pâturage” milk requires 
its members to have cows that have access to at least 180 days of pasture per year. 
In Belgium, the “MARGUERITE HAPPY COW” chain advocates feeding cows with a 
minimum of 70% grass in the ration and at least 180 days of grazing, for a cattle load 
of 4 animals per ha (Servais, 2015).

However, even though these specifications exist, there is no real verification of these 
conditions. Thus, recently, the Chronopâture tool was developed to automatically count 
the number of days that the herd spends grazing, using a GPS collar. Unfortunately, 
such equipment can hardly be developed on a large scale, as it depends on the choice 
of the breeder. An alternative could be to observe more specifically the variations of 
milk composition according to the feed. For example, Coppa et al (2021) demonstrated 
that it was possible to predict the composition of the cow’s ration and to identify PDO 
practices using mid-infrared spectrum (MIR) analysis of milk, but they did not attempt 
to predict the number of days on pasture. This will be the aim of this work with the 
innovative aspect to use an indirect reference to predict the grass-based diet. 

The data come from the FuturoSpectre agreement linking Gembloux Agro-Bio Tech 
(University of Liège, Gembloux, Belgium), the Walloon Agricultural Research Centre 
(CRA-W, Gembloux, Belgium), the milk laboratory ‘Comité du Lait’ (Battice, Belgium), 
and the Walloon Breeding Association (AWé, Ciney, Belgium). Milk samples were 
collected in the bulk tank of 2,868 Walloon dairy farms between 2019 and 2020. 
The dataset contained 430,292 observations. All milk spectral data were generated 
by MilkoScan FT6000 MIR spectrometers (Foss Electric A/S, Hillerød, Denmark). 
Equations were applied on the recorded spectral data to estimate 38 traits related to 
the milk fatty acid (FA) profile, composition of mineral and protein as well as the content 
of lactoferrin and beta-hydroxy butyrate. All equations have a prediction R² higher than 
65%. The FA contents initially predicted by MIR in g per dl of milk were converted into 
g per 100 g of fat using the fat content provided by the spectrometer.

The prediction of grass-based diet is not directly possible as we do not have data on 
grazing management. However, in the Walloon Region of Belgium, there is grazing 
between the beginning of spring and the beginning of autumn. So, the hypothesis 
formulated in this work is that there is an indirect link between the month of the milk 
analysis and the presence on pasture. This month of test was so predicted using 
Partial Least Square (PLS) regression. To allow an external validation of the developed 
prediction equations, the initial dataset was divided into two parts: 80% training set 
and 20% validation set. The former includes 2,287 farms (345,223 records) while the 
latter includes 581 farms (85.069 records). To ensure the data independence, the 
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partition was performed with the constraint that the same farm could not be found in 
both sets. Based on the obtained predictions for the month, a hierarchical clustering 
was performed to highlight a “GRASS” group and a “NOGRASS” group. Then a second 
prediction model was performed to predict the GRASS modality. The prediction quality 
of the model was assessed by calculating the accuracy.

The accuracy obtained for the prediction of the month of test based on the used features 
was poor and equal to 0.394 + 0.002. The accuracy of the external validation was of 
0.398. However, a strong confusion existed between some months (Figure 1). Based on 
the dendrogram created after the hierarchical clustering done on the predicted values, 
it appeared clearly 2 groups. The first group that covered June, July, August, and 
September can be attributed to predicted of grass-based diet (i.e., GRASS modality). 
Therefore, a second PLS regression was built to predict the GRASS modality. The 
obtained prediction was, as expected, strongly better with an accuracy of 0.874 + 0.002. 
The validation accuracy was similar (0.876). This confirms the findings of Frizzarin et 
al. (2021) and Coppa et al. (2021) who mentioned that PLS-DA has very good ability 
to predict cow diet from the MIR spectrum. 

The feeding fingerprint explains this capacity to discriminate the grass-based diet 
in milk spectral data. According to Chilliard et al. (2000), fresh grass is the richest 
food in C18:3 fatty acids. Therefore, its ingestion by cows will confer a particular 
composition to the milk. A literature review done by Elgersma et al. (2006) revealed 
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Figure 1. Dendrogram and confusion matrix between predicted and observed months.
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that the milk of cows fed with fresh green forage has a higher ratio of unsaturated to 
saturated fatty acids and contains a higher proportion of polyunsaturated fatty acids and 
conjugated fatty acids (CLA) than the milk of cows fed with a total mixed ration. Even 
if the prediction accuracy for those FA traits by FT-MIR spectroscopy is moderate, the 
same trends were observed from our predicted FA values during the grazing period 
(Figure 2). Moreover, Frelich et al. (2012) observed an increase in long-chain FAs 
(LCFA) and a decrease in short- (SCFA) and medium-chain FAs (MCFA) in the milk 
fat when the feeding of cows is based on fresh grass. Again, this was also confirmed 
by our predicted FA values (Figure 3).  

The presence of grass-based diet is not a binary variable. Indeed, there is a feeding 
transition between winter and summer diets. The composition of the milk will therefore 
evolve gradually. Therefore, the use of a binary prediction does not make sense. 

Thus, it is much more relevant to look at the evolution of the prediction probability 
related to the presence of grass-based diet. Figure 4 represents the distribution of 
the GRASS PLS probability following the week of test in 2019. The annual evolution 
of these probability values has an expected trend with an increasing probability from 
April, which represents the passage to pasture, and then a decrease when the winter 
arrived, signifying the return of cows to the barn and a total mixed ration as feeding. 
So, the interval between the increase and decrease of the probability of belonging to 
the GRASS modality could be used to calculate the number of days spent by dairy 
cows on pasture.

Figure 2. Yearly evolution of the ratio of predicted unsaturated to saturated fatty acids 
and the predicted content of C18:2 cis-9,trans-11 and C18:3 cis-9, cis-12,cis-15 in 
milk fat.
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 Figure 2. Yearly evolution of the ratio of predicted unsaturated to saturated fatty acids and the predicted content of C18:2 

cis‑9,trans-11 and C18:3 cis-9, cis-12,cis-15 in milk fat.

Figure 3. Yearly evolution of the predicted content of short, medium, and long chain fatty acids in milk fat.

 
 

Figure 4. Boxplot of probabilities of belonging to the GRASS group in 2019 according to weeks (N = 101,442).
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The objective of this work was to contribute to the development of a tool for counting 
days on pasture for dairy cows on a given farm automatically. To achieve this objective, 
model was built to predict the presence of grass-based diet from the spectral data 
provided by the analysis of milk collected in the bulk tank. As no grazing calendar 
was available, this innovative aspect of this study was to propose the development of 
a model predicting an indirect trait, the test month. The month confusion during the 
prediction revealed the possibility to create a GRASS group. So, the second model was 
built to predict this group with a good accuracy. The evolution of the PLS probability had 
the expected trend and suggest the possibility to count the number of days spent on 
pasture. This measurement as based on the milk mid-infrared spectrometry presents 
the advantage to be cheap and available for all farms delivered their milk to a dairy 
company. This calculation is also interesting as the frequency of data acquisition is 
high. Indeed, the bulk tank milk samples are analysed every 1 or 4 days in each farms 
delivered milk to the dairy company. 
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Routine analysis of fatty acids (FA) in commercial bulk tank samples through 
Fourier-transform infrared (FTIR) spectroscopy is increasingly being used as a dairy 
management tool to assess feeding and farm management practices. Bulk tank 
FTIR milk FA profiles from 3,200 dairy herds in Quebec, Canada, over 3 years (April 
2019–March 2022; 1.9M samples) were assembled in a national database (Lactanet, 
Canada) and matched with the nearest test day records. The emphasis was put on 
the de novo, mixed and preformed FA groups as they originate from synthesis in the 
mammary gland (de novo), feed intake or body fat mobilization (preformed), or both 
(mixed). Specifically, de novo FA were associated with improved fat and protein content 
in bulk tank milk (rcorr = 0.81–0.82). Seasonal changes were distinctive with decreased 
de novo and mixed FA and increased preformed FA during the summer months. 
Increasing the proportion of corn silage in the ration up to 50% was associated with 
increased de novo and decreased preformed FA (based on a subset of 513 Holstein 
herds with available feed records). The margin over feed costs (MOFC; in $ per kg of 
hl milk or per kg of milk fat) was greater with increased de novo FA and smaller with 
increased preformed FA, whereas no association was observed between the milk FA 
profile and MOFC per cow (based on a subset of 95 Holstein herds with available 
profitability records). Overall, with increasing herd performance (kg of milk fat/cow and 
day) de novo FA increased, and preformed FA decreased. This trend was inversed 
for high performing herds (≥1.70 kg milk fat/cow and day), which further emphasizes 
the need to compare herds with specific milk FA profiles to their appropriate peers. 
However, variation of milk FA profiles was high within cohorts of herds with similar milk 
performance, thus highlighting the importance for using herd-specific benchmarks in 
relation to historical farm data and strategic goals for a herd (internal benchmarking). An 
interactive dashboard application was developed to visualize milk FA profiles including 
benchmarks for the user to interpret their herd performance against their peers and 
identify best management practices. To facilitate early detection and decision making 
on farm, current research efforts include the detection of anomalies and changes in the 
overall trend of milk FA as well as the identification of their potential causes (diagnostic) 
through artificial intelligence. 

Keywords: Decision support, fatty acid, mid-infrared spectroscopy, benchmarking.
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Fat is the most variable component of milk. Its concentration and its fatty acid (FA) 
profile vary according to several factors including the animal (parity, lactation stage, 
breed), the environment (season, management system) and nutrition (forage and grain 
type and proportion, amount, and composition of dairy fat supplements). Traditionally 
analyzed by gas chromatography, a laborious and costly technique, advances in 
technology over the last decade allow measuring major milk fatty acids routinely and 
rapidly by mid-infrared (MIR) spectroscopy. This technique offers the opportunity to 
monitor milk FA in bulk tank or individual cow samples alongside and, thus, at the 
same frequency as analyzing for major components (e.g., fat, protein, lactose, milk 
urea nitrogen, somatic cell counts). It is therefore possible to obtain the complete 
composition of a milk sample, including the FA profile with the main groups of FA. 
Management and dietary practicing that modulate cow behaviour and rumen conditions 
were previously found to be associated with changes in the FA synthetized de novo 
from rumen precursors based on northeastern US commercial dairy farms (44 and 
39 farms, respectively; Woolpert et al., 2016, 2017). Analyzing these FA routinely in 
bulk tank samples collected every other day therefore open the possibility to better 
monitor herd health and performance, and to better understand and monitor herd milk 
components and overall herd performance. Our main objective was to better understand 
herd milk FA profiles through benchmarking and the development of a decision-making 
tool to support producers in their daily management decisions.

Milk FA can be divided in 3 main groups, according to their biological origin.  These 
groups include de novo FA (short chain FA synthesized in the mammary gland from 
rumen precursors); Preformed FA (Long chain FA derived from dietary FA transferred 
into milk and FA mobilized from adipose tissue); and Mixed FA (Medium chain FA from 
mixed origin; Figure 1). Accordingly, changes in nutrition, management or metabolism 
of the cows and the herd will be reflected as changes in milk fatty acid profile. 

Introduction 

Milk fatty acids 
origin

Figure 1. Milk FA groups based on origin and potential causes of increases or decreases of these 
groups in milk (g/100g milk). 
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 Since April 2019, Lactanet offers routine milk FA profile analysis to all Quebec dairy 
producers, and more recently to some producers from other provinces in Canada 
as well. The objective is to implement this analysis across the labs in Canada and 
therefore be able to offer it across the country. Meanwhile, Quebec data was used to 
benchmark and compare FA results from herds based on different criteria, in order to 
provide a better understanding of this new metric.

Bulk tank milk samples from 3,200 dairy herds on milk recording in Quebec (N = 1.9M) 
analyzed from April 2019 to July 2022 were used in this analysis to evaluate the use 
of FA as a monitoring tool. 

 

 

Data analysis and 
main findings

Figure 2. Relationship between de novo and main milk components (Butterfat. BF; and true protein) 
expressed in g/100g of milk for 1.9M bulk tank samples from 2019 to 2022 in Quebec dairy herds of 
different predominant breed type. 

Figure 3. Boxplot representation of milk fat and fatty acid concentrations (g/100g milk) for 2821 
Quebec herds of different breeds (AY = Ayrshire; BS = Brown Swiss; HO = Holstein; JE = Jersey). 
Horizontal line represents provincial average.
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Milk fat and protein were correlated with de novo FA from bulk tank milk (rcorr=0.81–0.82; 
Figure 2) and to a lesser extent with preformed FA (rcorr=0.45 and 0.04, respectively). 
On a milk basis, each 0.1-percentage unit of increase in de novo FA increased milk 
fat content by 0.201 unit (rcorr=0.82) and milk protein content by 0.117 unit (rcorr=0.81); 
whereas each 0.1-unit increment in preformed FA increased milk fat by 0.099 unit 
(rcorr=0.45) and had no impact on milk protein (rcorr=0.04). 

Several benchmarks were produced such as for milking system, organic status, herd 
size and milking frequency and are made available online (https://lactanet.ca/en/
profilab-factsheets-with-benchmarks/). Main results are summarized below. 

Bulk tank values were matched with the closest test-day results for milk recording 
herds (N=3700) in order to compare milk FA profiles of herds of different breeds or 
performance levels. On a milk basis (g FA/100g milk) Jersey (JE) herds had higher 
concentrations of all fatty acid groups, followed by other colored breeds and finally 
Holstein (HO) herds (Figure 3). Interestingly, the variation of FA concentrations within a 
breed was often higher than across different breeds, as shown on the previous Figure.

Holstein herds were classified in percentile ranking based on performance (kg milk/
cow/day) to compare milk FA profiles of different production level groups (Figure 4). 
Again, results revealed bigger within-group difference than between-group variation. 
A similar comparison was performed with herd performance expressed as kg of milk 
fat/cow and day (Graph not shown). Overall, with increasing herd performance, de 
novo FA increased and preformed FA decreased. This trend was inversed for high 
performing herds (≥1.70 kg milk fat/cow and day), which further emphasizes the need 
to compare herds with specific milk FA profiles to their appropriate peers. 

Organic status of herds and its seasonal impact on milk fat and fatty acids was also 
studied and revealed very distinct patterns for organic herds with a noticeable increased 
in preformed fatty acids and concurring decrease in de novo fatty acids coinciding with 
the onset of the pasture season (Figure 5).  

Fatty acid 
benchmarks

Figure 4. Boxplot representation of milk fat and fatty acid concentrations (g/100g milk) for 2652 
conventional Holstein herds in Quebec, Canada based on their production level. Horizontal line represents 
provincial average.

 

https://lactanet.ca/en/profilab-factsheets-with-benchmarks/
https://lactanet.ca/en/profilab-factsheets-with-benchmarks/
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A subset of 513 Holstein herds with available feed records was used to assess the 
impact of corn silage proportions in the ration on milk fat and fatty acid profiles. Herds 
were grouped based on the relative proportion of corn silage fed to the lactating herd 
(dry matter basis). Results suggest that increasing the proportion of corn silage in the 
ration up to 50% is associated with increased de novo and decreased preformed FA 
concentrations in milk (Figure 6).

Finally, the margin over feed costs (MOFC; in $ per kg of hl milk or per kg of milk fat) 
was greater with increased de novo FA and smaller with increased preformed FA, 
whereas no association was observed between the milk FA profile and MOFC per 
cow (results not shown).

Figure 5. Seasonal variation of milk fat and fatty acid concentrations (g/100g milk) for 1572 conventional 
and 62 organic Holstein herds in Quebec, Canada.

Figure 6. Boxplot representation of milk fat and fatty acid concentrations (g/100g milk) for 426 
conventional Holstein herds in Quebec, Canada based on the proportion of corn silage in the ration 
(dry matter basis). Horizontal line represents provincial average.
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In conclusion, variation of milk FA profiles within specific cohorts of herds is often 
greater than within cohorts, thus highlighting the importance for using herd-specific 
benchmarks in relation to historical farm data and strategic goals for a herd (internal 
benchmarking). An interactive dashboard application was developed to visualize milk 
FA profiles including benchmarks for the user to interpret their herd performance against 
their peers. Current usage in Quebec provides these values updated at every bulk 
tank pick-up, thus approximately every 48 hours. Future developments include the 
development of a cow-level monitoring tool as well as the use of artificial intelligence 
to provide support in the detection of variations and interpretation of milk fatty acid 
profiles at the herd level. 
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With more breeding options available, decisions regarding which animals to replace 
and which animals to breed and the type of semen to use has become increasingly 
complex. US dairy farmers typically consider a couple key individual performance 
measures in the decision making process. Assessing the future economic returns would 
provide a better assessment, however requires more data inputs and a more complex 
method of analysis. This paper will explain how a prediction model developed by the 
University of Florida in collaboration with Dairy Records Management Systems will 
reduce the guesswork and simplify the process of making replacement and breeding 
decisions using cow performance data collected through milk recording.

Keywords: Fourdraine, Clay, De Vries, optimization, breeding, replacements, economic, 
decision, support, milk, recording.

Sorted semen has enabled important changes in how producers manage programs 
for replacement animals while optimizing overall genetic progress. Increased use of 
sorted dairy semen can achieve more female calves to replace existing cows or to 
expand the herd without significantly impacting conception rates. A ready supply of 
replacement heifers provides more options to replace cows that are low producing, 
have reproductive problems or are not healthy. Genomic testing accelerates a herd’s 
overall genetic progress when the highest genetic merit cows and heifers are bred with 
sorted dairy semen. Recently, in addition to conventional and sorted semen, U.S dairy 
farmers have added another option when making breeding decisions – semen from 
beef bulls. Typically, the most valuable animals (heifers and higher genetic merit first 
lactation cows) are bred to sorted dairy semen at first service. Conventional semen 
usually is used for later services. Because dairy farmers want to take advantage of 
higher revenues for a dairy/beef calf, there has been an increased use of beef semen 
in the dairy industry. Utilizing Dairy Records Management Systems (DRMS) breeding 
data from over 2 million cows, recent results found not only increased use of beef 
semen but there have been recent changes in the age and timing that dairy cows 
have been bred to beef semen.

With so many options available including using cows as embryo donors or recipients, 
how can a producer determine the best breeding option for each animal and thereby 
improve returns? Utilizing a prediction model developed by the University of Florida in 
collaboration with DRMS, decision support software was developed that reduces the 
guesswork while simplifying the process of making replacement and breeding decisions 
using cow performance data collected through milk recording.

Abstract

Introduction
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This new decision support software features individual cow genetic information coupled 
with cow performance data to predict each cow’s future performance and economic 
values for replacement and mating decisions. This information can be used to decide 
whether a cow should be retained, bred or replaced. In addition, the model assigns an 
economic value to each of the three potential mating sire choices: sorted dairy semen, 
conventional dairy semen or beef semen. As inputs related to each cow’s stage of 
lactation, reproductive status or genetic information may change daily, outcomes from 
the model will change as well, and, replacement and breeding decisions can be made 
based on the most current data.

Using data from over 10 million DRMS breeding records, Figure 1 illustrates the type 
of semen used for Holstein and Jersey breedings during the recent two years. Based 
on this two-year period, it is clear that there has been an increase in use of both beef 
semen and dairy sorted semen that has resulted in reduced use of conventional dairy 
semen. Overall, almost 50% of breedings to Holstein and Jersey cows were to sorted 
dairy or beef semen.

With easier access to replacement animals and improved fertility, producers have 
lowered the threshold in terms of how many times they will breed a cow before deciding 
to stop breeding and to replace her. Therefore, as the number of times a producer will 

U.S. breeding 
trends

Figure 1. Semen usage trend for Holstein and Jersey cows.
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breed a cow before considering culling has dropped in the past five years, the decision 
process to breed with three choices of semen at hand has changed significantly. A 
fourth option for herds that consider embryo transfers is to use a low genetic merit cow 
as a recipient. Table 1 shows a comparison based on parity and service number and 
the type of semen used on Holstein Cows in the DRMS breeding records

Over fifty percent of US Holstein heifers were bred to sorted semen on first or second 
service. This makes sense because these should be genetically superior animals and 
because breeding these animals with sorted semen should yield the greatest number 
of female offspring to use as replacements. Interestingly by the third service, the 
percent of breedings to beef semen on heifers is twenty-five percent. Additionally, the 
use of beef semen increases rapidly with lactation number. Thirteen percent of first 
lactation cows were bred to beef semen on first service. Use of beef semen increases 
to thirty‑six percent for third and greater lactation cows.

Another observed difference relates to semen usage based on herd size. Figure 2 show 
the distribution of semen usage for herds with a minimum of 1,000 cows. Based on the 
DRMS data, smaller herds used a substantively lower percentage of beef semen and 
sorted semen than larger herds. This trend for smaller herds did not change much in 
the recent two years while the trend in larger herds was to use more beef and sorted 
dairy semen and less conventional dairy semen.

Over fifty percent of US Holstein heifers were bred to sorted semen on first or second 
service. This makes sense because these should be genetically superior animals and 
because breeding these animals with sorted semen should yield the greatest number 
of female offspring to use as replacements. Interestingly by the third service, the 
percent of breedings to beef semen on heifers is twenty-five percent. Additionally, the 
use of beef semen increases rapidly with lactation number. Thirteen percent of first 
lactation cows were bred to beef semen on first service. Use of beef semen increases 
to thirty‑six percent for third and greater lactation cows.

Another observed difference relates to semen usage based on herd size. Figure 2 show 
the distribution of semen usage for herds with a minimum of 1,000 cows. Based on the 
DRMS data, smaller herds used a substantively lower percentage of beef semen and 
sorted semen than larger herds. This trend for smaller herds did not change much in 
the recent two years while the trend in larger herds was to use more beef and sorted 
dairy semen and less conventional dairy semen.

Dairy managers face an increasingly complex decision making process pertaining to 
when a cow should be sold, bred and which sire to breed the cow to. In most cases, 
decisions are based on a small number of variables that can be easily obtained on an 

Table 1. Semen distribution for Holstein cows by parity, service number, and type of semen. 
 

 Service # % Beef % HO Conv % HO Sorted % Jersey 
1 4.0%  36.0%  58.3%  1.7% 
2 6.7% 40.0% 51.7% 1.6% Heifer 
3 25.3% 48.2% 24.6% 1.9% 
1 13.1% 59.8% 24.8% 2.3% 
2 19.5% 61.2% 17.0% 2.2% 1st Lact 
3 37.7% 55.3% 6.3% 0.7% 
1 24.8% 60.6% 13.4% 1.1% 
2 29.8% 60.4% 9.0% 0.9% 2nd Lact 
3 42.8% 53.7% 2.8% 0.6% 
1 36.1% 55.2% 7.8% 0.8% 
2 39.8% 54.4% 5.2% 0.6% 3> Lact 
3 50.2% 47.1% 2.1% 0.7% 
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individual cow. For example, a replacement decision typically is based on how much 
did the cow produce in her current or past lactation, did she experience several health 
problems, is she open and how many times was she bred? The breeding decision 
concerning which semen type to for a cow will include some of the same variables but 
in most cases also includes the genetic value of the animal. Although this process can 
be managed using a report from herd management software and making a personal 
judgement, it does not take into account some of the more complex factors such as 
milk price, replacement cost, value of a dairy female versus dairy male or the value of 
a dairy beef cross calf, to name a few.

To make more informed decisions and allow for a larger number of parameters for 
individual cows and the herd to be part of the analysis, the University of Florida Animal 
Sciences department, in collaboration with DRMS, developed a model that will calculate 
an economic value of each the cow in the herd and also calculates values for breeding 
a cow to either dairy conventional, dairy sorted or beef semen. The outcomes from 
the model were then incorporated into a decision support tool showing the relative 
ranking of the cow in the herd and provides a first choice and second choice breeding 
recommendation for cows that need to be bred.

Data inputs to the model consist of parameters for the herd and individual cows. Most 
of the herd parameters such as conception rates, milk production levels by lactation can 
be obtained from the on farm PCDART herd management software or monthly DRMS 
test day processing. Financial information must be provided by the producer. Financial 
information consists of milk price (including milk components), heifer replacement 
costs, beef price, selling price of a dairy bull calf and dairy x beef calf, and costs per 
unit of sorted, conventional dairy and beef semen. The model also allows for a feed 
cost adjustment.

Cow data includes cow lactation number, days in milk, status data (milking or dry), 
reproductive status (Bred, Pregnant, Open, etc..), the last 2 test day milk, fat, and 
protein weights, current lactation to date milk, fat and protein weights, and past lactation 
305D milk, fat and protein weights. The economic genetic merit (Net Merit Dollars) is 
also included for each cow.

The model estimates future cash flows following each decision alternative (keep, 
replace, and breed with sexed dairy, conventional dairy, or beef semen) following 
optimal replacement and breeding decisions now and into the future. These future 
cash flows are calculated using dynamic programming and future cow performance 
estimates based on the milk recording data and prices. Cash flow estimates include 
cash flows from replacement heifers when the cow is replaced now or in the future. 
Typically cash flows for six years into the future are needed to capture all changes in 
cash flows that follow from a replacement or breeding decision. The model automatically 
determines this length of time.

A novel feature of this model is that future cash flows are calculated for each cow 
based on her best estimated future performance for milk production, fertility, forced 
culling, genetic merit etc. This allows for accurate future cash flow estimates. Finally, 
the model calculates the differences between the net present values of the future cash 
flow estimates and presents them as four different economic values. For example, the 
economic value of the cow (Keep Dollar) is the difference between the net present 
value of the keep (and optimal breeding) decision and the decision to replace the cow 
now with a heifer. When this economic value is greater for a cow, the more valuable 
the cow is to keep in the herd. Cows that rank low for this economic keep value should 
be culled and replaced. Insemination values are calculated as the net present value 

Description of the 
model

Need for a 
breeding and 
culling decision 
support tool
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of breeding with that type of semen compared to the net present value of the decision 
to delay breeding until the next opportunity.

As stated above, the model returns four key economic values, the economic value of 
the cow (Keep Dollar), plus three economic insemination values for breeding the cow 
to either Sorted Dairy, Conventional Dairy or Beef semen respectively. The results 
from the model are merged with other cow data, and the percentile ranking for the 
cow’s Keep Dollar that provides an easily interpreted rank of relative economic worth 
for each cow within the herd. 

The three insemination values are ranked for each cow and the recommendation with 
the highest economic merit is presented as first choice, while the next highest value 
is presented as second choice. The dollar difference between first and second choice 
is provided to determine the economic difference between first and second choice. 
Picture 1 provides an example output for cows that are due to be bred.

In the example above, Cow 8068 has a Keep Dollar of 1020 which ranks her at 66th 
percentile (Keep Perc.) within the herd. The first choice recommendation is to breed 
her with (S)orted dairy semen and second choice would be (C)onventional dairy 
semen. Breeding 8068 with Sorted semen has a 17 dollar advantage over breeding 
her with conventional dairy semen. Cow 8075 ranks a much lower 37th percentile so 
the breeding recommendation is to breed her with (B)eef semen. However, her second 
choice of (C)onventional semen is close behind with a 1 Dollar difference.

Dairy farmers can use the combination of the cow’s Keep percentile and first semen 
choice recommendation to determine which cows to breed (low Keep percentile cows 
should be considered for replacement). If semen inventory is limited, ranking cows by 
first choice and the economic difference between first and second will allow the dairy 
farmer to select the highest dollar difference values that would be the cows with the 
strongest recommendation to breed to first choice.

This new decision support tool will help dairy farmers make more informed breeding and 
culling decisions. The model is customizable using each herd’s unique situation, and, 
new parameters that would impact a cow’s economic value can be added. In addition, 
this new tool is time sensitive and will use the most current data available from the 
herd management software to ensure changes in production or reproductive status are 
reflected in a cow’s relative economic value in the herd. Current efforts are focused on 
testing the model with several dairies, and, future enhancements will include breeding 

Presentation of 
results

Conclusion

Table 2. Sample Output. 
 

ID Keep  
Dollar 

Keep  
Perc. 

First  
choice 

Second
choice 

First over  
Second 

8066 729 43 C S 2 
8068 1020 66 S C 17 
8071 739 44 B C 4 
8072 863 54 S C 18 
8074 875 56 S C 10 
8075 646 37 B C 1 
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recommendations for heifers allowing further expansion to a herd level decision tool 
taking into account number of replacements needed to maintain herd size.
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The reproductive performance of a dairy cow can be influenced by her metabolic status 
during early lactation. As this period is also characterized by important changes in 
the milk yield and milk fatty acid (FA) profile, we aimed to assess the potential of first 
test date milk FA profiles analysed by Fourier-transform infrared (FTIR) spectroscopy 
to predict the subsequent reproduction performance. First-test date records from 
246,345 Holstein cows in early lactation (5–35 DIM) across Quebec, Canada, were 
included in the analysis. Records pertained to 2,835 herds and spanned over 2 years 
(2020 and 2022). Cows were clustered in similar cohorts based on their first test date 
milk composition, FA (expressed as g/100 g of total FA) and yield using principal 
components. Clustering was based on the CLARA concept with a k-medoid approach 
on subsamples to overcome the limitation of computational resources in clustering a 
large dataset. Three clusters were identified after iteration. Reproduction success was 
assessed based on the interval between first service to conception (FSTC) and culled 
by 60 DIM (CULL) using a linear regression and binomial logistic regression mixed effect 
model, respectively. Cluster 3 was composed of cows with high preformed FA (56.2% 
on total FA basis), 18:1-to-14:0 ratio (4.74), BHB (0.17 mM) and fat-to-protein ratio 
(1.51), but low de novo FA (17.1%). In contrast, Cluster 2 was composed of cows with 
low preformed FA (39.9%), 18:1-to-14:0 ratio (2.08), BHB (0.08 mM) and fat-to-protein 
ratio (1.17), but high de novo FA (25.8% total FA). Cluster 1 was in between Cluster 3 
and 2 and had the highest milk yield. The FSTC was greatest (P < 0.001) for Cluster 
3 (62.2 days) followed by Cluster 1 (60.7 days) and Cluster 2 (57.9 days). Likelihood 
for CULL was greatest (P < 0.001) for Cluster 3 (odds ratio of 2.6). This preliminary 
analysis suggests that FTIR milk FA profiles at first test date could be used as early 
indicators for the following reproduction success of dairy cows and help improve the 
transition management through continuous monitoring. 

Keywords: Decision support, DHI, fertility, early lactation.

The increased mobilization of body reserves after parturition is reflected by changes 
in milk composition and milk fatty acid (FA) profiles, in particular through increased 
uptake of FA by the mammary gland and decreased de novo synthesis of FA. As early 
lactation is also a critical phase for later production and reproduction performance with 
metabolically challenged cows more likely to suffer from early lactation disorders, first 
test date milk composition might be used as early indicator for reproductive success. 
The objective of this study was to assess whether first test milk components and FA 
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profiles are associated with the subsequent reproductive performance in commercial 
dairy herds using a large DHI dataset. 

Test day records with milk components, milk and reproduction performance were 
obtained by Lactanet database (Lactanet, Sainte-Anne-de-Bellevue, Canada). For this 
retrospective study, we restricted the dataset to first test date records from Holstein 
cows in early lactation (5-35 DIM) with test results over two complete years (2020 and 
2021). The dataset included 246,345 cows (30% in parity 1; 26% in parity 2; and 44% 
in parity 3 or more). In total, 2,835 dairy herds from Quebec, Canada, equipped with 
a pipeline (N = 2,226), parlour (N = 251) or automatic (N = 358) milking system were 
included in the study. As a confirmed gestation was not recorded, the subsequent 
lactation start date was used to define the actual conception date. Therefore, for 
reproduction performance indicators requiring a confirmed gestation, the dataset was 
limited to 28,254 test dates from 100,711 cows with tests dates until July 2021. 

Milk samples were analysed as regular DHI milk samples for fat, protein, lactose, MUN, 
SCC, and FA by Fourier-transform infrared (FTIR) using MilkoScan FT+ and MilkoScan 
7 RM instruments (Foss, Hillerød, Denmark). Fatty acids included individual and groups 
of FA (C14:0, C16:0, C18:0, and sum of C18:1, saturated, mono-unsaturated, poly-
unsaturated, short-chain, medium-chain, long-chain, de novo, mixed, and preformed 
FA) as described in FOSS Application Note 64 and Schwarz et al. (2018).  

Data were cleaned to remove implausible values and outliers by removing data below 
the 1st and above the 99th percentile. The milk FA profile was expressed as % of total 
FA (TFA; i.e., the sum of de novo, mixed, and preformed FA). 

Cows were grouped in similar cohorts based on their first test date milk composition and 
yield using k-medoid clustering via principal components. The principal components 
were used to de-noise the data and to balance the influence of similar milk components. 
To deal with the large number of observations a sampling approach was used for 
clustering (CLARA; Kaufman and Rousseeuw, 1990). The procedure consists of 
randomly splitting the dataset into multiple subsamples and applying the PAM algorithm 
(Partitioning Around Medoids; Kaufman and Rousseeuw, 1990) to generate the optimal 
set of cluster centres for each subsample, here computed based on a dissimilarity 
function based on the Euclidean distance. The optimal number of clusters was evaluated 
using the average Silhouette approach. 

Differences in milk composition and reproduction performance among the identified 
clusters were evaluated through a mixed effect linear regression with fixed effects 
assigned to cluster, milking system, lactation, DIM at test date, season and year, and 
random effects assigned to herd. For a binary outcome, a mixed effect logistic regression 
was used. All analyses were conducted using R (version 4.1.3; R Foundation for 
Statistical Computing, Vienna, Austria) and add-on packages computing the principal 
components (FactoMiner; Lê et al., 2018), clusters (cluster; Mächler et al., 2022), and 
mixed effect linear regression (lmerTest; Kuznetsova et al., 2017), and mixed effect 
logistic regression (lme4; Bates et al.; 2015). 

Clustering animals based on their first test milk composition, yield, and fatty acid profiles 
resulted in three distinct clusters. Most cows were assigned to Cluster 1 but herds, 
herd size and housing system were similarly distributed among clusters (Table 1). 

Material and 
methods

Results and 
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The milk composition differed among clusters (P < 0.001; Figure 1) which resulted 
in Cluster 3 having the least ideal profile with a high fat-to-protein ratio (FPR; 
mean of 1.51), high BHB (0.17 mmol/L), high preformed FA (56.2% of TFA), a high 
C18:1-to-C14:0 ratio (4.74), low de novo FA (17.1% of TFA), and low mixed FA 
(26.8% of TFA). Although the FPR is typically high for early lactation cows due to 
the higher milk fat synthesis during the postpartum negative energy balance, cows 
with a FPR value greater than 1.5 (Heuer et al., 1999) or 2.0 (Toni et al., 2011) 
may show an increase in postpartum diseases. Likewise, cow with milk BHB above 
0.20 mmol/L were more likely to suffer from hyperketonemia (Denis-Robichaud 
et al., 2014), and cows with de novo FA below 20% of TFA were more likely to 
have early-lactation diseases and be removed from the herd (Bach et al., 1999). 
Milk composition for Cluster 2 was particular high in de novo (25.8% of TFA) and 
mixed (34.5% of TFA) FA, low in preformed FA (39.7% of TFA) and C18:1 to C14:0 
(2.08). Cluster 1 was intermediate among the three clusters but had a higher milk 
yield (+9.1 kg milk to Cluster 2). 

Table 1. Cluster description.  
 

  Cluster  
Variable 1 2 3 
Number of herds 2722 2726 2717 
Number of cows 107,657 72,889 57,913 
Number of lactating cows (median) 71.7 71.9 67.9 
Number of herds in tie stalls 2,195 2,200 2,194 

 
Figure 2. Milk composition and milk fatty acid (FA) profile at first test date by cluster. 
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Preliminary analyses suggested that the reproduction performance differed among 
clusters. Cluster 3 with the least ideal milk composition and FA profile was associated 
with the longest (P < 0.001) interval between first breeding to conception at 62.2 days 
(confidence interval of 32.2-92.3 days) compared to 57.9 (27-8-87.9) days for Cluster 
2 and 60.7 (30.6-90.8) days for Cluster 1. Likewise, cows assigned to Cluster 3 were 
more likely (P < 0.001) to be culled before 60 DIM than cows in Cluster 2 (odd ratio of 
2.6 and 1.3, respectively). The contrast among clusters is expected to be even more 
greater considering that cows left before the event occurred were not considered for 
first breeding to conception (e.g., cows removed before the first breeding or before 
the start of the next lactation). Future studies should therefore use a survival analysis 
approach to take into account censored observations in the analyses. 

These findings suggest that the milk composition and milk FA profile at first test date 
can be indicative for the following reproduction success. As such, these findings can be 
useful for prevention measures and can help with transition management and decision-
making support for future lactations but will be of limited use for current early lactation 
cows due to the monthly DHI test sampling scheme generally used in practice. A more 
frequent test sampling during the first two weeks of lactation should be considered for a 
timely intervention. Likewise, test day information from the previous lactation might be 
relevant for the current reproduction performance and add predictive power to forecast 
future reproduction issues. 
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Large amounts of data are generated by robotic milking systems (RMS), creating 
an opportunity to add-value to these data by developing tools that can help improve 
decision making and RMS management.  One of the strategies to improve RMS 
efficiency is to select cows based on their performance at the RMS (kg of milk produced 
per total time spent in the RMS; kg milk/minute of box time). The objective was to 
develop box time-based indicators to rank the cows according to their performance 
at the RMS.  Data was collected for 8 months (October 5, 2020, until June 14, 2021) 
from 41 RMS Holstein herds, for a total of 5,429 cows and 411,405 records.  Data 
included milk production, box time, preparation time, DIM, parity, milking start and end 
time, milk composition and milk prices. Calculations were done based on the ICAR 
standards (i.e., 4-day average). Preliminary analysis has shown that box time and hence 
the indicators vary significantly across and within lactation. Variability was very high 
during early lactation, presumably associated with the important increase of production 
during that period. The variability was also very high in late lactation, because of a 
decreasing number of observations due to ended lactations, thus data were limited 
to DIM between 28 and 365. Regression analysis was performed to generate factors 
to correct indicators for parity groups (1,2 and +3) and stage of lactation (DIM). Herd 
was considered as a random effect. The best fittings were obtained with quadratic 
polynomials. The resulting equations can be used to generate a factor to correct the 
data to 150 DIM within each parity, and to adjust to parity 2 for data in the other two 
parity groups. In addition to the amount of milk produced per minute of box time an 
economic indicator was also developed: dollars per minute of box time. The average of 
box time was 7.22 min/cow, and the average of the indicators were 1.86 kg milk/min of 
box time and 1.50 Can$/min of box time. The box time indicators can be used to rank 
and subsequently select cows according to their performance at the RMS, in addition 
to other indicators such as somatic cell count. They can also be used to calculate 
benchmarks for comparative analysis across RMS herds, as the RMS efficiency is 
key for the economic success of the farms.

Keywords: Box time, robotic milking systems, efficiency.
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Data produced by robotic milking systems (RMS) is an opportunity to personalise 
the milking management, as the RMS generates a large amount of individual cows’ 
data. These data also allow the development of tools that can help the overall RMS 
management. One of the key factors of RMS management and hence the successful 
economic use of the robots is to improve their efficiency, (i.e., maximise the amount 
of milk produced per robot per day) (Carlstroem et al., 2013). Studies had suggested 
that the most important factor to achieve this is the total of kg of milk produced per total 
time spent in the RMS; kg milk/minute of box time (Carlstroem et al., 2013; Vosman et 
al., 2014). Box time is composed of the milking time and the preparation or treatment 
time (e.g., cleaning, attachment etc.), in other words is the time the cow spends in the 
robot and is expressed per milking or can be aggregated by day.

Genetics is also an important factor of RMS efficiency as milking time is related to 
cows’ genetics (e.g., milkability) and preparation time to a lesser extent too (e.g., udder 
conformation and cows’ temperament). However, it is known that genetic decisions 
have a medium to long term impact. For short term decision-making using data from 
the RMS is an opportunity. Nevertheless, in the future the integration of genetic data 
and RMS data could help improve the decision management tools. The objective was 
to develop box time-based indicators to rank the cows according to their performance 
at the RMS.

Data was collected for 8 months (October 5, 2020, until June 14, 2021) from 41 RMS 
Holstein herds, for a total of 5,429 cows and 411,405 records. Data included milk 
production, box time, preparation time, DIM, parity, milking start and end time, milk 
composition from the RMS sensors and milk prices. Calculations were done based 
on the ICAR standards (i.e., 96 hours average). The RMS efficiency per cow was 
calculated as the average of milk production (kg) per minutes of box time for a 96h 
period. To have an economic box time indicator the dollar per minute of box time 
was calculated as follows: dollar value of milk produced per minute of box time for a 
96h period; where the dollar value of milk was calculated as a linear combination of 
milk component yields. Milk components were available from the RMS sensors and a 
constant was used for lactose content. 

Our preliminary analysis has shown that box time and hence the indicators vary 
significantly across and within lactation (Figure 1a), which has been also reported 
by Heringstad and Bugten (2014). The variability was also very high in late lactation, 
because of a decreasing number of observations due to ended lactations, thus data were 
limited to DIM between 28 and 365. Regression analysis was performed to generate 
factors to correct indicators for parity groups (1,2 and +3) and stage of lactation (DIM). 
Herd was considered as a random effect. Analyses were conducted in SAS version 
9.4 (SAS Institute Inc.).

The best fittings were obtained with quadratic polynomial equations. The resulting 
equations can be used to generate a factor to correct the data to 150 DIM within each 
parity, and to adjust to parity 2 for data in the other two parity groups (Figure 1a, b).  
The average of box time was 7.22 min/cow, and the average of the indicators were 
1.86 kg milk/min of box time and 1.50 Can$/min of box time. 
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Figure 1. a) Raw data of the indicator dollar per minute of box time by parity groups 
(1,2, +3). b) Adjusted values of dollar per minute of box time by parity groups (1,2, 
+3). The DIM were converted to weeks in milk to facilitate the visualisation of the 
different points.
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Studies have reported the importance of RMS efficiency in the management of robotic 
milking (Carlström et al., 2013; Heringstad and Bugten, 2014). Therefore, developing 
an indicator to rank the cows according to their performance has become a valuable 
decision support tool for RMS management, as shown by the implementation of these 
indicators among others in the interactive robot report by Lactanet.

Selecting cows for improving efficiency using the milkability trait could be a 
complementary approach. Milkability heritability ranges between 0.21 and 0.44 
(Carlstroem et al., 2013; Cesarani et al., 2021) depending on the breed. 

The box time indicators can be used to rank and subsequently select cows according 
to their performance at the RMS, in addition to other indicators such as somatic cell 
count. They can also be used to calculate benchmarks for comparative analysis across 
RMS herds, as the RMS efficiency is key for the economic success of the farms. Future 
work will focus on the possibility of adding genetic tools to refine the box time indicators 
and on the development of the adjustment factors for different breeds, as sufficient 
data becomes available to calculate robust adjustment factors. 

Ce projet est financé en vertu de l’Accord Canada-Québec de mise en œuvre du 
Partenariat canadien pour l’agriculture. Ensemble, le gouvernement fédéral et le 
gouvernement du Québec ont investi 293 millions de dollars répartis sur une période 
de 5 ans, soit de 2018 à 2023.

Cet accord appuie des initiatives stratégiques qui aideront les secteurs à croître, à 
innover et à prospérer.
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Changes in the bulk tank milk component profiles (e.g., basic components, MUN 
and specific fatty acids) often indicate some positive or negative effects of nutrition, 
management, and environmental factors. Generally, producers and their advisors 
detect abnormal trends by visual inspection of components on a report, which is tedious 
and requires skills due to large volume of information. Our interim goal is to develop 
analytical tools to assist in the identification of unwanted, abnormal trends. Our broad 
goal is to develop tools that can propose plausible diagnostics and possible actions 
to re-establish the desired situation.

To achieve the interim goal, identification of anomalies is based on three numerical 
indicators (deviation, variation, and gradient) and breed-specific population ranking. 
Deviation is the difference between component values and population benchmarks, 
while variation and gradient indicate short-term (e.g., 4 days) and longer-term 
(e.g.,  10  days) changes, respectively. We developed a python package which is 
executed daily to generate indicator values for all milk components, calculate the herd 
rank for each indicator, and create a series of reports for validation purpose. Among 
all possibilities that were investigated to trigger alerts and attention messages, an 
approach based on extreme gradients of the three main groups of fatty acids was 
adopted to start with.

With respect to the broad goal, we explore a rule-based expert system approach 
for diagnosing and recognizing potential issues regarding herd or rumen health 
management. Currently, we are at the stage of eliciting, implementing, and validating 
diagnostic IF-THEN rules with the collaboration of domain experts and computer 
scientists. The rules are based on the anomaly indicators and ranks. In parallel, we 
are exploring the use of ontology and symbolic artificial intelligence to develop a more 
complete diagnostic and recommendation system. 

Keywords: Bulk tank milk component, anomaly detection, time series analysis, 
rule‑based system, diagnostic rule, ontology.

Changes in the value of indicators such as bulk tank milk components generally indicate 
some positive or negative effects of management and environmental factors such 
as feed quality, feeding behaviour, or ambient conditions. The data provided on milk 
profiles keeps expanding with the recent addition of fatty acids (e.g., de novo, mixed, 
preformed, polyunsaturated) to more standard components (e.g., fat, protein, MUN). 
Abnormal and unwanted trends can be detected in this data, which is generally done 
by producers and their advisors through visual inspection of components on a report. 
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Routine bulk tank analysis of milk fatty acids allows early detection of pattern changes 
which can provide early information on potential future problems. For example, a sudden 
and unplanned drop in de novo fatty acids concomitant with an increase in preformed 
fatty acids will often result in impaired rumen function, and eventually a drop in fat and 
protein yields, which will have an impact on milk revenue. 

Trend anomaly detection on a report is tedious and requires skills, especially when 
simultaneously considering many complex variables such as specific fatty acids. Indeed, 
changes in trends often are not so obvious to detect by visual inspection, especially if 
they happen gradually over many days. In addition, there are many complex variables 
which are moving simultaneously in different directions. Also, experienced experts are 
not always available for consulting. One possible solution is to use robust analytics to 
provide insights to producers and their advisors, to help them reacting more rapidly 
and making more informed decisions.

This project aims to 

1.	 assist in identification of anomalies in bulk tank milk components using basic 
statistical techniques;

2.	  inform/alert a producer and advisors that an abnormal trend is happening. 

Complementarily, the use of a rule-based artificial intelligence (AI) approach is explored 
to help diagnosing and recognizing potential issues with respect to herd or rumen 
health management.

Our anomaly detection approach is based on the transformation of raw milk component 
values into features which we believe better represent an anomaly. These features, 
or indicators, are some basic statistical measures extracted from milk component 
values, and subsequently, a series of reports are produced for validation purposes on 
a daily basis. For running the aforementioned tasks, we developed a python package. 
However, the software should get enhanced to be capable of triggering messages and 
alerts based on extreme values in the new features. In parallel, we will continue to work 
with domain experts on the development of diagnostics rules.

The lab analysis is performed on a bulk tank milk sample of a typical herd every two 
days for extracting the profile of its components, including fat, protein, MUN, and fatty 
acids such as de novo, mixed, preformed, and polyunsaturated. In this project, there 
are seven time series that are considered for each herd. Having such data for about 
1300 herds over 3 years, we calculate daily a moving average per breed for each 
component and use it as time series benchmark. All components are on a milk basis for 
this analysis (kg/hL for fat and protein, mg N/dL for MUN and g/100g milk for fatty acids). 

Our anomaly detection approach consists of two major steps: (1) Calculating statistical 
measures for all components of all herds, and (2) Ranking the herds, each component 
separately, within the same predominant breed. Specifically, in the first step, three 
measures are calculated for all components of each herd, as illustrated in Figure 1: 

•	 Deviation is the difference between the component value and population 
benchmarks (see the chart lines of the de novo which show that herd values are 
lower than benchmarks). The advantage of using deviation measure is removing 
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trend or seasonality, and population reaction effects, such as thermal stress, in 
the original time series.

	 Variation is defined as the difference of the current component value from the second 
last measures (see the line chart of the MUN). We also calculate the z‑score of the 
variation values for each herd to make results comparable with each other herd. 
Variations specify short-term changes.

•	 Gradient is defined as the rate of change in 10 days (see the line chart of the 
preformed which indicates a decreasing trend). Gradients represent trends or 
long‑term changes.

It must be noted that the number of lags in variation and the number of days in gradient 
are considered as parameters which can be regulated based on expert opinion and 
on-going calibration.

After obtaining the measurements, we can rank the herds, each component separately, 
in the second phase. Rank, or more precisely, percentile rank, is a common metric for 
scoring that maps a quantity to a value between 0 and 100. For instance, if rank of the 
fat deviation for a herd is 20th, it means 20% of the herds are below that herd. Having 
three measures and seven milk components, we will end up to 42 indicators (21 raw 
values + 21 rank values) for each herd. It is worth mentioning that ranking is done 
within the same predominant breed. However, it also can be done without considering 
the breed, if the number of herds with specific predominant breed is scarce.

Figure 1. Calculating deviation, variation, and gradient. Component profiles and their corresponding 
benchmarks are shown by dark and light colours, respectively. 
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Transformation of the deviation, variation (z-score), and gradient raw values for each 
herd into percentile ranks has some advantages: 

1.	 It is unitless.

2.	 We can easily select thresholds and extract data (e.g., top 10%).

3.	 It can be used as a proxy for probability, likelihood, or degree of confidence.

Our basic approach toward finding problematic herds is to assess component ranks 
in extreme cases, for each measure, separately, while user-defined thresholds define 
low and high extremes, where both are considered anomalies. Based on an inventive 
formula, we assign a confidence level to each measure/component of a herd, and 
consequently, a total confidence level to the herd, along with the number of confidence 
levels. For instance, consider gradient ranks for a herd are 4 in fat, 9 in protein, 1 in de 
novo, 0 in mixed, 89 in preformed, 98 in polyunsaturated, and 5 in MUN. If we set low 
and high thresholds to 10% and 90%, respectively, then the preformed value is filtered 
out and the confidence level for a component is calculated using the following relation:

 

                              						              (1)

 

This leads to a confidence level greater than the high threshold for a component, i.e., 96 
in fat, 91 in protein, 99 in de novo, 100 in mixed, 98 in polyunsaturated, and 95 MUN. 
Then, we report the average of the confidence levels over the six confidence levels as 
overall confidence level for the herd, which in this example equals to 97.

Although our basic approach recognizes problematic herds, it leaves the interpretation 
of anomalies and diagnosis to farm advisors or producers, which can be challenging. To 
assist producers and their advisors in diagnostics and selection of corrective actions, 
the use of a rule-based expert system approach is being explored. Currently, we are 
at the stage of eliciting, implementing, and validating diagnostic IF-THEN rules with 
the collaboration of domain experts and computer scientists. The rules are based on 
the anomaly indicators and ranks. In parallel, a prototype ontology-based diagnostic 
and action recommendation system was developed to explore the convenience of a 
symbolic AI approach in terms of experts’ knowledge maintenance and automated 
reasoning capabilities,

A python package was developed for trend anomalies and diagnostic. Using the 
package, daily anomaly reports for advisors can be produced. One report consists of 
the statistical measures by component and herd ranks. We also create symbolic rank 
reports to highlight the herds with the lowest or highest percentile scores, applying 
user-defined thresholds over the ranks. These results are intended to trigger alerts for 
producers and advisors in extreme cases. 
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Currently, we have come up with two extreme cases which relate to the existence of 
severe problems in herds. However, these cases are not associated with a specific 
diagnostic. Interpretation of extreme cases remains with the observant:

•	 Extreme Case I: De novo is decreasing (i.e., the rank of the gradient is less than 
10%) and preformed is increasing (i.e., the rank of the gradient is greater than 90%). 
See, for example, Figure 2. This case usually reflects a sudden body mobilization. 
Documented examples would include important stress affecting a great proportion 
of cows in the herd (e.g., diarrheal episode through the herd, feed delivery issue 
impacting ration composition for a few meals/hours), an expected but sudden 
change in ration composition (e.g., cows going out on pasture in early summer, 
addition of an oil-containing feed as home-roasted soybeans or potato chips) or 
an important proportion of cows freshly calved.

•	 Extreme Case II: De novo is decreasing, mixed decreasing, and preformed 
decreasing. See, for instance, Figure 3. Our experience shows that these cases 
are often related to an overall decrease in dry matter intake in the herd: Preformed 
fatty acids decrease because of the lower fatty acid intake directly; and de novo and 
mixed fatty acids decrease because of the decreased rumen precursor availability 
due to reduced rumen fermentation, therefore affecting mammary gland synthesis 
of these fatty acid groups. It is important to note that this change could also be 
due to an increase in milk yield (i.e., dilution effect on fatty acid concentrations on 
a milk basis), therefore a generally positive outcome for the producer.

It should be noted that we are developing a mechanism which not only recognizes 
severe problems, but also display attention messages on reports accordingly, and 
suitably sends alerts to the producers at a reasonable frequency (not too high to be 
unnecessarily bothering, and not too low to leave severe cases unrecognized). To find 
out if the above extreme cases can be considered as the base of the alert/attention 
system, we analysed the data over a 3-month period (February to April 2022), which 
contains 52,483 observations on 1271 herds. Table 1 shows a summary of the analysis: 
For instance, if only the trend of the de novo fatty acid is investigated, we see that 
about 90 percent of herds had at least one observation of negative trend in these 

Extreme value 
analysis

Figure 2. An example of the component profile of a herd in Extreme Case I.
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3 months. Or, equivalently, 9.6 percent of the records had an occurrence of decreased 
de novo (which corresponds to the fixed thresholds of 10%), among which 5.5 percent 
of records indicate episodes of decreased de novo, considering an episode is defined 
as a series of consecutive drops or increases. The average length of episodes in this 

case is equal to . 
 
 

 . Interestingly, the number of observations and episodes in 
both Extreme Case I and II is very low. Thus, both cases look qualified enough to 
trigger alerts along with proper messages on reports for producers at the beginning of 
an episode with an average length of 1.4 observations. Without triggering new alerts, 
attention messages can remain on reports during an episode. 

With the help of domain experts in collaboration with computer scientists, we developed 
a rule-based system with seven diagnostic profiles and corresponding sets of corrective 

Figure 2. An example of the component profile of a herd in Extreme Case I.

Table 1. Analysis of extreme cases.  
 

 % Observations % Episodes % Herds 
All records 100% 100% 100% 
De novo is decreasing 
Extreme Case I 

9.6% 
1.7% 

5.5% 
1.2% 

90.4% 
36.% 

Extreme Case II 0.7% 0.5% 18.6% 
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actions. Examples of profiles are risk of acidosis (Figure 4) and lack of consumption. 
One rule was developed for each profile, with each rule antecedent consisting of terms 
evaluating the value of selected deviations and gradients of milk components. A level 
of confidence in a diagnostic can be calculated through the ranks of the antecedents, 
similar to the previously presented extreme gradient rules. The rules were implemented 
in the anomaly detector program that runs every day. All rules are checked against all 
herds, and firing results are circulated for validation purposes.

Without surprises, this prototyping exercise has shown what has been known for 
years: there are challenges in the development, adjustment and maintenance of rule-
based systems, and this approach leads to knowledge bases that tend to be static 
and limited in scope. For example, the possible corrective actions that were identified 
could individually be associated with different profiles, actions could be revised, and 
new actions could be frequently added, edited, or removed. Such knowledge could 
be embedded and handled more efficiently through an ontology, as we explored 
that avenue by implementing the seven rules and diagnostic profiles together with 
possible corrective action in a prototype. In this prototype, the ontology is stored in 
an OWL (Ontology-Web-Language) format and accessed by a python script. This 
script populates the ontology with the bulk tank data for each herd, which triggers 
an embedded reasoner and produces the corresponding diagnostics. Queries on 
the ontology can be done to retrieve possible corrective actions. Although, this 
prototype ontology was very limited, it could be expanded to make more complete 
recommendations, like suggestions about how to implement some corrective actions. 
In addition, such an ontology could be coupled to other existing ones, to expand the 
scope of recommendations of additional specific information. 

In this project, we are developing a software application for recognizing anomalies in 
dairy herds, having bulk tank milk component profiles, such as fat, protein, MUN, and 

Figure 3. An example of the component profile of a herd in Extreme Case II.
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some specific fatty acids. This system will be equipped with an alert/attention system 
for producers and their advisors. 

In the first phase of the project, we developed a python package to transform raw milk 
data to three statistical indicators (deviation, variation, gradient) that can represent 
anomalies, rank the herds based on the values of the indicators, and build daily 
reports which can be interpreted by experts to recognize anomalies. Based on such 
reports, we also investigated two extreme cases situations that can be related to 
severe problems (without implying a specific diagnosis) in herds, so that can be used 
for triggering alerts for producers and advisors. The extreme cases are identified from 
extreme fatty acids trends.

The second phase was focused on the development of a rule-based expert system. 
Currently, we are at the stage of building a knowledge base that consists of IF-THEN 
diagnostic rules for diagnosing issues such as risk of acidosis and lack of consumption. 
These rules are created based on indicator profiles obtained from the first phase, with 
the help of domain experts in collaboration with computer scientists. However, because 
of the challenges in updating and improving rule-based systems, we explored the use 
of ontology and symbolic artificial intelligence to develop a more complete diagnostic 
and recommendation system. Such an ontology can be expanded to cover additional 
dairy management areas in future.

The funding for this project was provided through the Government of Canada’s Canadian 
Agricultural Strategic Priorities Program (CASPP). 

Figure 4. An example of a diagnostic rule and possible actions. 
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The Pheno3D project aims to bring the selection of beef cattle into high-throughput 
phenotyping by relying on the non-invasive technology of three-dimensional (3D) 
imaging. Thanks to artificial intelligence, the automation of 3D image analysis is now 
possible. Thus, from an existing 3D “scanner”, the PHENO3D project aims to develop 
an automated processing device (artificial intelligence) and in real time of 3D images 
to extract phenotypes used in the bovine meat sector (weight and scoring notes). To 
develop and validate the PHENO3D artificial intelligence, the project will first have to 
build a database comprising 3D images of the animals and their phenotypes (weight 
and scores) of approximately 500 images for each of the 10 involved breeds in beef 
recording. Artificial intelligence (Machine Learning, Deep Learning) will be optimized 
on its phenotype prediction performance but also on its ability to be embedded in a 
3D scanner. The project will go beyond proof of concept by building a 3D imaging 
phenotyping service and its business models, and developing the skills needed for these 
use cases. To achieve its objectives, the PHENO3D project will rely on a network of 
actors covering the entire animal selection sector (RandD actors, performance control 
actors, breeding organisations). This use case in beef cattle will be a first step towards 
the deployment of high-throughput phenotyping by 3D imaging.

Keywords: 3D imaging, phenotype, performance, cattle, weighing, scoring, genetic.

In France and in the beef cattle sector, genetic improvement is based on performance 
monitoring (also called phenotyping) of a large population of animals (Griffon et al., 
2017). Phenotyping is based in part on a network of farmers affiliated to breeding 
organisations. For beef calves a first phenotyping is done around weaning. This 
collection of performances is carried out by advisers from Eliance network or from 
breeding organisations on farm. It includes animal weighing and scoring morphological 
traits. The morphological assessment comprises 19 scores on muscular and skeletal 
development or functional traits (see Figure 1). The compilation of performances 
allows, based on the phenotypic characterization of the breeders, the reasoned 
choice of mattings to meet the objectives of breed evolution. Even if the scoring by 
visual scores remains the most reliable, fast and less expensive technique compared 
to taking manual measurements on animals, the beef sector has expressed its need 
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for an automatized digital solution to lower the very significant training costs and to 
reduce the human subjectivity effect on measurements.

The project partners have significant background and experience in the field of 3D 
imaging. At the scientific level, IDELE in partnership with INRAE and 3D Ouest led 
the morpho3D project. The objective was to estimate the weight and morphological 
measurements of dairy cows from 3D images of the entire animal (Le Cozler et al., 
2019a; Le Cozler et al., 2019b). Another project involving the same partners aimed to 
obtain the body condition score of dairy cows from the cows’ back 3D images (Fischer 
et al., 2015).

At the field level, FCEL, IDELE and Ingenera have developed a system (BodyMat M) 
to measure dairy cows BCS using a cane equipped with a 3D camera. Another project 
(BodyMat X) carried out with the same partners aimed to carry out morphological scoring 
of beef cattle using a scanner equipped with 3D cameras. Unfortunately, these initiatives 
failed to be industrialised with success because of difficulties with the industrial partner. 

Finally, 3D imaging is a technology that has been proven to be the basis of prediction 
models for both simple metric measurements such as weight (Le Cozler et al., 2019a; 
Le Cozler et al., 2019b) or more qualitative notations. complex such as the body 
condition score (Fischer et al., 2015). If the collection of 3D images has been the subject 
of convincing proofs of concept, the processing of these images is not yet automatic 
and remains time-consuming. However, the application of finer artificial intelligence 
methods (such as simple or deep neural networks) on these images makes it possible 
to automate 3D image processing and analysis.

Considering the real needs and the past scientific, technical, and commercial 
experiences, we decided to run our own project from the development to the commercial 
phase.

The objectives of the Pheno3D project are to:

Figure 1. Syntheses of the positions of muscular development on the left and skeletal development on the 
right of beef cattle at weaning.
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1.	 define the specification of the 3D scanner adapted to young beef cattle and for a 
mobile use;

2. define the best logistical arrangements for the installation and the passage of animals; 

3.	 validate the ability of the system to gather good quality 3D images of entire beef 
cattle in movements:

4.	 develop and validate AI algorithms to estimate automatically morphological scores 
and weights of young beef cattle.

The tool must produce one or several 3D images to reconstitute an entire animal as 
a whole or partly. From this reconstruction, features will be extracted automatically. 
From the features or directly from the images, models and algorithm will estimate:

•	 The morphological scores for the traits described in figure 1.

•	 The weight with a prediction error or 3% max.

The device must be portable or transportable (and in this case be installed and ready 
to collect data in 30' and uninstalled in 20'). The dimensions of the device should not 
exceed 3m wide and 3.5m high which corresponds to the dimensions necessary to 
obtain qualitive 3D images (the smaller the distance between the animal and the sensor, 
the better the image quality) while avoiding scaring the animal to go inside. It must be 
transportable in a vehicle usually used by technicians and advisors. It will also have 
to be light (15kg of simultaneous load maximum) so that a single person can handle 
it. Indeed, it will be used by technicians who will move it from one farm to another.

The device must be able to produce a 3D image from a moving animal that will be guided 
within the device (using cables or fences). Indeed, the idea is to capture the data during 
the passage of animals (walking/running), one after the other, in a containment corridor.

The 3D cameras must be able to take a picture indoor or outdoor so they mustn’t be 
too much sensitive to sunlight. The activation of the device can be done from human 
intervention. It will then have to be able to connect with an electronic animal identification 
device for farms where the animals are equipped with electronic loops.

The device will have to provide the expected score estimates in real time without 
internet access. The data must be exportable to another system. 

The technical characteristics of the tool will be refined in the various specifications 
written throughout the project.

The system will be used on beef calves at weaning (currently between 5 and 9 months). 
The algorithms will be developed for the French fallowing breeds: Charolaise and 
Limousine to start the project (being the 2 most developed breeds in France) then 
Aubrac, Bazadaise, Blanc Bleu, Blonde d’Aquitaine, Gasconne, Parthenaise, Rouge 
des Près and Salers will be integrated.

General project’s 
road map

Main objectives

Device specifications

Targeted animals
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The animals will have to pass through the device and the images will be taken on 
the moving cattle. The animals will therefore have to pass in motion, without running, 
without jumping, and perpendicular to the gantry to obtain clear images by the 5 pairs 
of sensors present on the device. To achieve this goal, field tests will be organized to 
optimize the speed and position of the animals. Several configurations will be tested 
to obtain the best results in order to validate the tool.

The objectives will be to validate the ergonomics and the robustness of the device, the 
quality of the recorded images, the speediness of the images collection, in different 
conditions. This action must make it possible to adjust the prototype if necessary.

To validate the accuracy of the device, this action will aim to compare the measurements 
estimated by the prototype with reference measurements (like withers height, hips 
width, chest depth etc., see Figure 2) done manually on the animals and under different 
conditions. 

This action will make it possible to estimate the prediction errors, repeatability and 
reproducibility of the 3D image collection and will validate the ability of the device to 
take a representative image of the real cattle. The exigence criteria for the validation 
are presented in table 1.

The automatic processing of 3D images will be a revolution since in this project we 
want to achieve high-throughput phenotyping. Previously, image processing was largely 
manual, took much time and was not compatible with high-throughput phenotyping. 
In a performance monitoring use case, it is necessary to have a direct information in 
the 3D image quality to eventually make the animal pass a second time under the 3D 
scanner device. Having an automatic processing of the images, will allow advisers and 

Conditions of use 
and measurement

Device test and linear 
measures validation

Figure 2. Morphological parameters tested 
to assess the quality of the image and 
measurements (in red).

Development 
and validation 
of AI algorithms 
to estimate 
morphological scores 
and weight
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farmers to have access to weight and scores quickly and discuss the results to adjust 
the monitoring of the herd in a unique session. Deep learning or machine learning 
models will be used to predict the weight and each morphological scores that are part 
of the scoring. The models will be built on a large dataset (more than 500 animals 
scanned, weighted and scored) built on farm to calibrate and then validate every 
models. The building of the dataset will be done on several farms during the current 
performance monitoring done by trained morphological scorers to ensure to capture 
the whole variability of the breed and thus having reproducible models.

The development of models by breed will be an important step since each breed has 
its morphological specificity and its own variability so the scoring has to be done based 
on breed standards. Because of this intra-breed specificities, models will have to take 
a breed effect or to have a model by traits to predict. The idea is to see if models can 
be efficiently adapted to one breed to another and if breed with a lower population (and 
probably a lower dataset) can benefit of the datasets from other breeds.

Possible adjustments to be used routinely and safely (robustness, sensor protection, 
rugged boxes, data transmission and storage protocols, user manuals, transport cases, 
etc.) will be necessary as well as optimizations to limit construction costs. Development 
of the complete application for the end user will be done and will integrate their needs 
and requests. The final prototype integrating hardware and software adjustments will 
lead to the pre-industrial version of the device.

A first prototype was developed and tested on the field. The picture 3 below shows 
the main features and characteristics of the device. 

Figure 3. On the right, the plan of the prototype; on the left, the prototype tested on 
the field; the prototype includes 5 pairs of cameras; the height is 2.6 m; width is 3 m

Prototype adjustment 
and development of 
the final version

First results and 
achievements

Development of the 
first prototype

 
 
Table 1. Exigency criteria for the device’s validation. 
 

Criteria Values 

Image quality 

We will use the notion of completeness of the image. For 
this, we will look at the part of the animal that fits in a virtual 
box going from the hocks to the withers and from the tip of 
the buttocks to the end of the neck. This image should be 
complete. 
 
That is to say that if all the measurements defined above 
are feasible, the image will be considered complete and 
usable. 
 
80% of the images must be usable on the first pass and 
95% after 2 passes through the device. 

Measurement precision 
Correlation coefficient (Pearson) between manual 
measurements and measurements estimated on the 3D 
image > 0.7 

Repeatability and reproducibility Coefficients of variation of repeatability and reproducibility 
< 4% 
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Figure 3. On the right, the plan of the prototype; on the left, the prototype tested on 
the field; the prototype includes 5 pairs of cameras; the height is 2.6 m; width is 3 m

Figure 4. Depth and 3D images taken from the first prototype.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

A few images were taken on the first trial. The first version tested only had two 3D 
sensors on the top of the scanner. A sample of the images taken are presented in figure 
4 below. Images processing will allow a smoothing of the surface. Will all the sensors, 
the 3D images quality seems promising for extracting phenotypes.
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Optimization of 
the passage of 
animals in the 
scanner

Figure 5. Organisation of the scanning at the exit of the weighting scale. 

Figure 6. Organisation of the scanning in a pen. White fences are additional 
fences added to form a funnel. 

 
 

 

The objective was to define scanning organizations to have animals that: 

•	 Will pass under the device walking or trotting in the most standard position.

•	 Will not deteriorate the 3D sensors

On-farm tests allow us to define 2 organizations for scanning the animals. One, where 
the device is directly placed at the exit of a weighting scale without any additional 
fences or restraining elements (figure 5). The animals are managed in the way defined 
on the farm for weighting. The other requires two empty and adjacent pens of a barn 
or of a contention system. The device is placed in the first pen with additional fences 
that create a “funnel” from the width of the pen to a gate of 1.5 m (figure 6). Then the 
animal pass under the device and an operator guides it in the second pen where the 
animal will wait the end of the operation 
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Below the provisional schedule of the PHENO3D project is described:

•	 Spring to fall 2022: prototype testing phase in various situations to find the best 
way to pass animals in the device and obtain the best results

•	 Fall 2022: validation of the prototype: having good results passing animals 

•	 Fall 2022 to spring 2023: data collection with several prototype to have lots of data 
by breed and to create algorithms.

•	 Spring 2023: validation of algorithms by breeding organisations. Each organisation 
will validate the algorithms concerning its own breed.

•	 During 2023: industrialization of the tool. 3D Ouest or another IOT manufacturer 
will industrialize the tool. We have estimated a need for more than 100 tools for 
France 

•	 During 2024: routine use in the field

Automated morphological scoring based on 3D imaging will meet the sector’s demand 
for an alternative to the current costly method: visual observation by technician scorer. 
The tool will be designed to obtain scoring and weighing data in a single scan of the 

animal. Today the weighing is carried out 2 to 3 times before weaning, the score only 
once. By adapting the system on the weighing sites, we will be able to collect more 
data on the morphology of the animal, at different ages, and new phenotypes like 
volume and body surface of the animal. This could improve selection schemes and 
advice services on sorting animals on farms.

We also want to export the device internationally for weighing cattle without restraint, 
as the French scoring system is not used internationally.

In the medium term, artificial intelligence developed in the project will facilitate research 
on new phenotypes for beef cattle. Exporting the technology and the artificial intelligence 
developed in PHENO3D to animal other ages, other types of animals, or other sectors 
will make it possible to make significant advances in the collection and development 
of phenotypes for multi-performance breeding.

Summary of the road 
maps

Figure 7. Project road map.

Conclusion 
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Milk mid-infrared (MIR) spectral data is a rich source of information. Even if the 
technology has been known for decades, exploring its capacities beyond the estimation 
of major milk components is rather new. Experiences have shown the necessity to 
develop high levels of cooperation between industry and science but also across 
countries. The former North-West European Interreg project OptiMIR created an 
innovative European network of Milk Recording Organizations (MROs) that shared 
existing tools and approach of services to farmers, harmonized the way to record key 
data and allowed the access to the latest technology in getting information out of milk 
analysis. The tools developed by OptiMIR also allowed MROs easier development of 
implementations of MIR-based predictions and tools. One major achievement was to 
develop a method allowing the standardization of different MIR spectrometers across 
laboratories, and brands of apparatus. This standardization is now available to industry 
through an association of European MROs called European Milk Recording (EMR). 
Amongst the most important current issues in dairy herd improvement is the research 
of technologies for health and welfare monitoring. The current North-West European 
Interreg project HappyMoo develops novel strategies, methods, and tools to address 
this taking up the linked challenges but also feeding on opportunities in the use of MIR 
spectra. Amongst the five freedoms of animal welfare, we are addressing especially 
three, the absence of disease, hunger and stress. The ongoing research shows the 
importance of clear final objectives, precise trait definitions and collaborative work of 
industry and science. Among the topics that will be exemplified are the difficulties to 
combine reference data across systems (scales x implementation) for lameness, the 
problems to use sensor data provided in the field for BCS, the issue of synchronising 
reference and MIR data and the design of experiences to generate the needed reference 
data. The obtention of correct, variable, and validated reference data is one of the 
major challenges. Particularly considering more the biological background, but also 
concepts like deep phenotyping and molecular phenotypes will play certainly also a 
role in the future. Moreover, MIR-based phenotypes are always linked to the availability 
of the, at the most monthly, MIR data and innovative ideas are needed to go beyond 
this limitation. Advances in computational strategies will be needed as the use of pre-
defined calibrations should be replaced by more advanced cloud-based learning and 
decision-making algorithms integrating sensors or other on-farm technologies.
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Importance of fine milk composition for dairy cow management and breeding was 
already highlighted by several previous reviews (e.g., Gengler et al., 2016) and the 
use of milk mid-infrared (MIR), often also called FT-MIR, for Fourier-Transform MIR 
as currently predominant implementation, spectrometry (e.g., De Marchi et al., 2014) 
has been recognized in this context. The technology has evolved for decades but until 
rather recently in milk analysis its use was limited to major milk components. This 
document draws major conclusions on the challenges and opportunities in the use of 
milk MIR spectra in the context of management and breeding. Emphasis will be given 
to the experiences learned from the OptiMIR and HappyMoo projects and additional 
aspects beyond these will be highlighted.

Large-scale phenotyping using milk MIR spectra was extensively developed during the 
last years. This phenotyping has become an important source of improvement in herd 
management, animal genetic evaluation, and control of quality of milk and subsequently 
milk products. But as highlighted by Grelet et al. (2021) key factors affect the quality of 
prediction. As a matter of fact, a priory the milk MIR spectra are very similar to marker 
genomic data and needs to be “calibrated” to make it a posteriori useful. Currently 
extensive research is ongoing to advance in the understanding of the requirements 
to achieve high quality prediction equation. Research illustrated the need to address 
several issues as the precise definition of the target trait (reference phenotype) and 
its nature, the excellent control of the variability in reference and MIR data, both in the 
calibration datasets but also the application datasets. Also, some merely technical 
issues were highlight as the potential difficulty to get access to raw spectra and the 
need to harmonize spectra coming from different brands models and machines, but also 
improve stability over time. All these experiences have shown the necessity to develop 
high levels of cooperation between industry and science but also across countries.

From 2009 to 2015 supported by 3.7 M€ European Union funding through the North-
West European Interreg scheme the OptiMIR project (https://keep.eu/projects/6989/
OptiMIR-new-tools-for-a-more-EN/) joint 11 milk recording organizations, 1 lab 
and 5  research units creating an innovative European network of Milk Recording 
Organizations (MROs). Figure 1 gives the partnership but also the geographical 
distribution across 6 countries. These MROs shared existing tools and approach of 
services to farmers, harmonized the way to record key data and allowed the access to 
the latest technology in getting information out of milk analysis. Very relevant was the 
joint acquisition of reference data covering the variability across the different production 
systems but also the joint developments of functional specifications. This allowed MROs 
much easier development of implementations of MIR-based predictions and tools. From 
a research point of view several equations were improved, new equations initiated. One 
major achievement was the development of a method allowing the standardization of 
different MIR spectrometers across laboratories, and brands of apparatus (Grelet et 
al., 2015). This standardization is now available to industry through an association of 
European MROs called European Milk Recording (EMR) (https://www.milkrecording.
eu/).

Introduction

Context

OptiMIR and 
HappyMoo



129

ICAR Technical Series no. 26

Gengler et al.

Based on this success and in order to address one of the most important current 
issues in dairy herd improvement, the research of technologies for health and welfare 
monitoring, in 2018 several of the groups involved in OptiMIR (https://keep.eu/
projects/21152/Delivering-NWE-dairy-farmer-EN/) but also new partners, joint forces in 
2018 for a four year project supported by 2.3 M€ European Union funding through the 
North-West European Interreg scheme (Figure 2). OptiMIR develops novel strategies, 
methods, and tools to address this taking up the linked challenges but also feeding on 
opportunities generated by OptiMIR. 

Amongst the five freedoms of animal welfare, especially three, the absence of disease, 
hunger and stress are addressed by HappyMoo. 

Figure 1. OptiMIR partnership and geographical distribution.

Figure 2. HappyMoo partnership and geographical distribution. 
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The ongoing research shows the importance of clear final objectives, precise trait 
definitions and collaborative work of industry and science. Among the precise issues 
that were found were the difficulties to combine reference data across systems. This 
was recently exemplified for lameness illustrating the fact that harmonization is not 
only an issue of scales but also their implementation and use are critical. Similarly, in 
the context of studying BCS provided by sensors, problems to use this data, the issue 
of synchronising reference and MIR data and the design of experiences to generate 
the needed reference data is an important issue. The obtention of correct, variable, 
harmonized and validated reference data is one of the major challenges. Here the 
role of ICAR as harmonizing body comes into focus. However, if for good reasons, 
reference data reflects differences in traits, breeds, circumstances, the question that 
needs to be answered if a general prediction equation can be achieved, or even ii the 
preferable option. Equations adapted to specific situations could be an alternative.

A bottleneck that MIR-based phenotypes cannot avoid is the precise definition and 
recording of needed high quality reference phenotypes. Novel concepts like deep 
phenotyping and molecular phenotypes adding more biological background will play 
certainly a role in the future. Moreover, MIR-based phenotypes are always linked to 
the availability of the, at the most monthly, MIR data and innovative ideas are needed 
to go beyond this limitation. Advances in computational strategies will be needed 
as the use of pre-defined calibrations should be replaced by more advanced cloud-
based learning and decision-making algorithms integrating sensors or other on-farm 
technologies. Finally, all developments will have to be integrated in the development 
of technical, scientific, and regulatory frame works, obviously a field were ICAR but 
also IDF potentially through ExtraMIR (Extra value from -smart use of- MIR spectra), 
a new joint action team of both organisations, will be important players.

Uses of MIR spectra in the dairy sector are increasing. International collaboration as 
exemplified by OptiMIR and HappyMoo with the objectives to offer concrete solutions 
and tools, both for MROs but also at the end to the farmer, was recognized as a 
promising strategy. Despite these experiences, current challenges, and opportunities 
in the use of milk MIR spectra subsist and new ones appear.

The authors also acknowledge the important support they received in the field of MIR 
research throughout the Futurospectre partnership, the “Service Public de Wallonie” 
(SPW – ARNE, Belgium), the National Fund for Scientific Research (Brussels, Belgium), 
the EMR EEIG and different European Projects (FP7: Robustmilk - Grant agreement n° 
211708, GreenhouseMilk – Grant agreement n° 238562, GplusE - Grant agreement n° 
613689, and H2020: The SmartCow - grant agreement n° 730924, INTERREG NWE: 
OptiMIR NWE190G and HappyMoo NWE730) supported this research. The content 
of the publication reflects only the view of the authors; the European Community is not 
liable for any use that may be made of the information contained in this publication.
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Mid infrared (MIR) spectra have been used since the late 2000s to phenotype new 
traits at large scale through prediction equations. It has been used in France since 
2012 to quantify free fatty acids on herd milks in the framework of quality-based milk 
payment system. In addition to the loss of income, a high lipolysis level leads to a 
degradation of organoleptic (rancid taste) and technological (processing inability) 
properties of milk. Monitoring lipolysis is required to maintain the quality of milk and 
dairy products. Lipolysis depends on many factors: genetics, farming practices, milking 
equipment, transformation process. Regarding genetics, Vanbergue suggested in 2017 
the existence of a genetic susceptibility to spontaneous lipolysis. 

The present study aims to investigate this issue further, by studying the genetic 
determinism of spontaneous lipolysis in a larger number of cows. This work was carried 
out within the framework of the LIPOMEC project which aims to better understand the 
molecular mechanisms controlling the degradation of milk fat in dairy species. Studying 
the genetic determinism of lipolysis requires the phenotyping of many cows. As the 
equation initially developed on herd milk was not fully appropriate for individual milks 
(range, precision), a new prediction equation was estimated from the MIR spectra of 
individual milks. For this purpose, 432 milk samples were collected in 4 experimental 
farms in 2018 (approximately 40 cows per farm sampled 2 or 3 times a year) to maximize 
the variability of breeds (Holstein, Normande, Montbéliarde, Jersey) and diets. 

A joint analysis of lipolysis according to ISO/TS 22113 standard (BDI method) and 
by MIR spectrometry was carried out on each sample. Lipolysis measured by BDI 
method averaged 0.53 mmol/100 g fat (sd=0.41 mmol/100 g fat). The equation was 
developed by Partial Least Square regression after LOG transformation. Its coefficient 
of determination R² reached 0.72, with a residual standard deviation Sy,x of 0.19 
mmol/100 g of fat. The equation was then applied to obtain phenotypes on more 
than 300,000 MIR milk spectra from Holstein, Normande and Montbéliarde breeds. 
Genetic parameters were estimated using a repeatability animal model. Heritability 
and repeatability estimates were moderate in both Normande and Holstein breeds but 
higher in Montbéliarde breed. This work opens the opportunity to new uses of MIR 
spectra to improve the control of lipolysis in farm, by a closer management of the herd, 
or even by a selection plan. The LIPOMEC project was funded both by APIS-GENE 
and the French National Agency.

Keywords: Lipolysis, dairy cattle, mid infrared spectroscopy, cow genetics. 
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Milk lipolysis is the breakdown of milk fat by an enzyme, the lipoprotein lipase, resulting 
in the release of free fatty acids in milk. This may lead to the development of a rancid 
flavor in milk considered unacceptable by the consumer beyond a certain threshold. 
Moreover, the presence of partial glycerides in milk interferes with technological 
processes in the industrial processing of dairy foods. In some French regions, lipolysis 
is therefore part of the criteria of the quality-based milk payment system, which leads to 
penalties when the level of lipolysis is above national standards (0.89 mEq/100g of fat).

Since 2012, lipolysis levels in milk are routinely measured in France by inter-professional 
milk analysis laboratories accredited under the milk quality payment scheme according 
to an instrumental method based on mid-infrared spectroscopy (MIR). However, this 
method has two drawbacks. First, the equation used was constructed from herd milks, 
and is not fully adapted to individual milk samples. Second, the anchor method used to 
check and adjust the calibration equation is the copper soap method, which is calibrated 
in the range from 0.4 to 1.2 meq/100 g fat, does not thus allow the identification of 
extreme values of lipolysis in milk.

Lipolysis results from a complex interplay between animal physiology, farming practices, 
milking equipment and technological process (Vanbergue, 2017; De Marchi et al. 2017). 
Recently, Vanbergue (2017) suggested the existence of a genetic susceptibility of dairy 
cows to lipolysis that needs to be confirmed. 

The objective of this study was therefore to develop a new equation based on MIR 
spectra to predict the level of lipolysis in individual milk samples, with the goal of using 
this tool to phenotype the high number of milk samples required to further explore the 
genetic determinism of lipolysis. This work was carried out within the framework of 
the LIPOMEC project, the first integrative project aimed to better understand lipolysis 
mechanisms in dairy species and granted both by APIS-GENE and the French National 
Agency.

Four hundred and thirty-two milk samples have been collected to meet the above 
objectives. A joint analysis of lipolysis according to ISO/TS 22113 standard (BDI method) 
and by MIR spectrometry has been carried out on each sample.

Four hundred and thirty-two milk samples were collected from four experimental farms, 
located in several regions in France, between March and October 2018 (approximately 
40 cows per farm sampled two or three times per year) to maximise variability in dairy 
breeds (Holstein, Normande, Montbéliarde, Jersey) and diets. 

During sampling, vials containing 0.02% bronopol preservative (wt/vol) were filled to 
capacity (100 mL) to avoid “churning” of the milk that could damage fat globules and 
activate lipolysis during transport. After collection, milk samples were stored at 4°C to 
limit bacterial proliferation and lipase-associated activities. Milk samples were sent at 
4°C to ACTALIA CECALAIT (39800 Poligny, France) for subsequent analyses. 

Table 1 shows the distribution of these samples across farms and time periods.

Material and 
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MIR spectra were recorded at ACTALIA CECALAIT using MilkoScan™ FT+ 
spectrometer (Foss, Hillerød, Denmark).

Reference values for lipolysis in milk were determined using the ISO/TS 22113|IDF/RM 
204 BDI (Bureau of Dairy Industry) method which specifies a method for determining the 
titratable acidity of milk fat. This analysis was carried out by ACTALIA CECALAIT within 
36 hours of sampling. Lipolysis measured by BDI method averaged 0.53 mmol/100 g 
fat (sd=0.41 mmol/100 g fat).

Four hundred and thirty individuals were retained after removal of two outliers for the 
development of the milk lipolysis prediction equation. The reference lipolysis values 
obtained by BDI method were log transformed. The equation was developed by partial 
least squares (PLS) regression using R software.

The lipolysis prediction equation was applied to 348,000 spectra from a database 
created in the PhenofinLait programme (2008-2013). After exclusion of outliers (very 
high values), 333,862 individuals were used for phenotypic description.

The estimation of genetic parameters was performed within breed using an animal 
model with repeated data over the first 3 lactations, i.e., 73,000 data for the Holstein 
breed, 71,000 for the Normande breed and 55,000 for the Montbéliarde breed. The 
following fixed effects were considered: herd x test day, analysis laboratory and time 
between sampling and analysis, month of calving within the season, age at calving in 
first lactation, stage of lactation (intra parity) and stage of pregnancy.

The developed milk lipolysis prediction equation has a coefficient of determination 
(R²) of 0.72 and an error (Sy,x) of 0.19 meq/100 g fat. Figure 1 shows the prediction 
results obtained using this equation, compared with the reference values obtained 
using the BDI method.

Table 1. Distribution of samples collected between farms and sampling periods.  
 

 Number of milk samples 
Experimental farm March/April 2018 June 2018 October 2018 Total 
Grignon 41 40 36 117 
UE du Pin 40 36 40 116 
UE Herbipôle 40 38 40 118 
IE PL Le Rheu 41 0 40 81 
Total 162 114 156 432 
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The developed milk lipolysis prediction equation is sufficiently accurate to be immediately 
used for breeding advice or genetic research but is intended to be improved with the 
inclusion of new data and new samples for others purposes linked to the milk quality 
payment scheme.

Data obtained from the PhenoFinlait database showed that milk lipolysis fluctuates 
during lactation with a more significant amplitude in first lactation. 

The effect of breed was highlighted, with Normande displaying a lower lipolysis rate 
in milk than Montbéliarde, while Prim’Holstein being intermediate.

The heritability of the milk lipolysis trait is moderate to high, which makes it possible to 
consider genomic selection in the future. In addition, for all three breeds, several regions 
of the genome related to the trait ‘milk lipolysis’ have been identified, some of which 
are genes or gene regulatory regions whose involvement remains to be confirmed.

Figure 1. Lipolysis predicted by the developed 
equation compared with the values observed by 
BDI method.

 
 

Phenotypic variability 
of milk lipolysis

Genetic parameters 
of milk lipolysis
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The newly developed equation can be used as a new precision breeding tool to monitor 
lipolysis in farms for a closer management of the herd. It opens the road to genetic 
selection to monitor lipolysis at the animal level. 
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Body condition score (BCS) is a subjective metric used worldwide to reflect the fat 
stored in mammals. BCS, as well as its change in early lactation, has been associated 
with productive, reproductive, and health traits. The objective of the present study was 
to predict, using different statistical techniques, BCS change (∆BCS) in early lactation 
dairy cows using milk mid infrared (MIR) spectra. A total of 73,193 BCS records from 
6,572 cows were collected from five research farms. To generate daily ∆ΒCS, splines 
with 6 knot points across days in milk (DIM) were fitted through individual test-day 
records of BCS. Daily BCS was interpolated from the splines and used to calculate 
daily ∆ΒCS. ∆ΒCSobservations were merged with MIR spectra recorded on the same 
week. Data in the first 120 DIM were retained. Three statistical methods were used to 
predict ∆BCS from the spectra; partial least squares regression (PLSR), generalized 
additive mixed model (GAMM), and neural networks (NN). Spectra and DIM were used 
as predictors in NN and PLSR, while the first 20 principal components of the spectra 
and a spline fitted through DIM were used as predictors in GAMM. Tuning parameters 
of PLSR were determined using 10 fold cross-validation. The NN model had two 
hidden layers and a Bayesian regularization applied to the input layer. To compare 
predictive ability across the approaches, the dataset was divided in 4 sub‑datasets, 
and iteratively 3 sub-datasets were used to train the methods, while the remaining 
sub-dataset (the test dataset) was used to test the methods. Prediction accuracy was 
evaluated according to the root mean square error of the test dataset (RMSEV; here 
multiplied by 1000) and the correlation (r) between the actual and the predicted ∆BCS. 
The RMSEV and r obtained from the four test datasets were averaged. Body condition 
score change was predicted with an average RMSEV of 1.02 BCS units (SD=0.010) 
and r of 0.87 (SD=0.004) from NN; the SD of actual ∆BCS was 2.05*10-3 BCS units. 
Partial least squares regression performed better than GAMM with an average RMSEV 
of 1.06 (SD=0.010) and 1.10 (SD=0.010) BCS units, respectively, and an r of 0.86 
(SD=0.004) and 0.84 (SD=0.004) for PLSR and GAMM, respectively. Results from 
the present study demonstrate the potential to use milk MIR spectra to predict ∆ΒCS, 
which can be used to support farm decisions and can be incorporated in dairy cow 
breeding programs.

Keywords: Mid-infrared spectroscopy, body condition score change, early lactation, 
machine learning.
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Body condition score (BCS) is a metric used worldwide to reflect fat stored in mammals 
(Roche et al., 2009). In dairy cows, BCS tends to be lost after parturition and it is 
generally restored before a new calving (Bauman and Carrie, 1980). Body condition 
score change is used on farms as an indicator of cow energy balance, and its trajectory 
in early lactation is generally used to support fertility decisions. In fact, BCS, as well 
as its change in early lactation, have been associated with fertility and health traits 
(Berry et al., 2007; Buckley et al., 2003; Roche et al., 2007). Buckley et al. (2003), for 
example, reported that the mean BCS at 60 and 100 days of lactation was positively 
associated with both submission for breeding in the first 21 days of the breeding 
season and the likelihood of pregnancy after 42 days of breeding. Butler and Smith 
(1989) documented the effect of the change of body condition score in early lactation 
on the rate of conception at first serving, reporting a conception rate of just 17% to 
first service in cows that lost more than 1 BCS unit (5-point scale) after calving, while 
cows that lost <1 BCS unit had a conception rate of 53% to first service. Body condition 
score, as well as its change (∆BCS), are therefore useful metrics for producers. Body 
condition score change can be calculated from multiple BCS records albeit these may 
not always be available.

Mid infrared spectroscopy of milk is a fast, cheap, and non-disruptive technique to 
generate spectra from milk samples (De March et al., 2013). The spectra are produced 
from the interaction between the light emitted from the spectrometer and the molecules 
within the milk and, utilizing suitable statistical techniques, it is possible to predict milk 
and animal traits from the spectra (Soyeurt et al., 2006; McParland et al., 2014). Milk 
MIR spectra are used to predict milk fatty acids with good accuracy (Soyeurt et al., 
2006) and, as reported by Nogalski et al. (2012), cows that lost >1 BCS unit in early 
lactation had a different milk fatty acid profile compared to cows that lost < 1 BCS 
units. Thus there is a strong biological hypothesis as to why ∆BCS could potentially 
be predicted from milk MIR spectra. McParland et al. (2014) pioneered the research 
on predicting DBCS from milk spectra in dairy cows, reporting a correlation between 
the actual and the predicted ∆BCS ranging from 0.57 to 0.75 using different spectra 
combination and partial least squares regression (PLSR) as the prediction method. 

The objective of the present study was to predict DBCS using morning milk spectra 
in early lactating dairy cows and to compare predictions from PLSR with those from 
generalized additive mixed model (GAMM) and neural networks (NN). Predicting ∆BCS 
from milk MIR spectra can routinely provide producers with DBCS estimates, which 
can be used in making reproductive decisions, as well as providing phenotypes for 
use in dairy cow breeding programs.

A total of 73,193 BCS records from 6,572 cows were recorded in 5 Teagasc research 
farms between 2015 and 2019. Body condition score was assessed by trained scorers 
using a 5-point scale with increment of 0.25 (Edmonson et al., 1989). BCS was recorded 
every 18 days, with a repeatability of BCS within a 7-day period being 0.69. Cows were 
from different parity orders (from parity 1 to 12) and different breeds (Holstein‑Friesian, 
Jersey, Norwegian Red, as well as their crosses). Daily BCS for each lactation was 
calculated after fitting a cubic spline with 6 knot points at 20, 70, 120, 170, 220, and 
270 days in milk (DIM) through individual test-day records of BCS with a covariance 
structure fitted among knot points (McParland et al., 2014). Daily ∆BCS was calculated 
from the fitted splines as the BCS on a given day minus the BCS of the previous day. 
To avoid potential problems with interpolation, only DBCS calculated on the day of an 
actual BCS records were retained. Lactations greater than 10 were deleted, and only 
DBCS records between DIM 5 and 120 were retained. Parities were grouped as first, 
second, third, fourth, and fifth or greater, and DBCS outliers were deleted for each 
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parity group as DBCS records greater than 3 standard deviations (SD) from the mean 
∆BCS of the respective parity group.

From the same cows and across the same time period, 423,532 individual milk 
spectra were collected from morning milking. Spectra outliers were deleted following 
the same procedure as described by Frizzarin et al. (2021a), and were standardized 
across time using the standardization coefficients provided as part of the European 
Milk Recording project ring testing program (Grelet et al., 2015; Grelet et al., 2017). 
Body condition score change records were merged with the closest spectra recorded 
within one week. The final dataset comprised 13,492 ∆BCS records across 2,489 
lactations from 1,250 cows.

All the analyses were conducted using the statistical software R (R core team). Three 
different prediction methods were used to predict ∆BCS: PLSR, GAMM, and NN. 
For the PLSR analyses, the a.m. spectra as well as a fourth order polynomial of DIM 
were used as predictor variables. The R package pls (Mevik et al., 2019) was used to 
develop the prediction equation. The number of PLSR factors were defined using 10 
folds cross-validation (CV). For the GAMM analyses, the first 20 principal components 
of the a.m. spectra were used as linear predictor variables with DIM fitted as a spline; 
cow-lactation was accounted as repeated measures in the model. The R package 
gamm4 (Wood and Scheipl, 2020) was used to develop the prediction equation. 
Lastly, a Bayesian regularized NN was developed using the a.m. spectra and the 
DIM as predictor variables. The R package brnn (Perez Rodrigez and Gianola, 2020) 
was used to develop the prediction equation, and the default tuning parameters were 
chosen, which included two hidden layers and a Bayesian regularization to the input 
layer to improve generalizability.

To test the predictive performance of the methods on unseen data, the original dataset 
was divided into four sub-datasets, three of these were used to train the prediction 
equation (i.e., training dataset), and the fourth sub-dataset was used to test the 
equation (i.e., test dataset). This process was repeated until all the four sub-datasets 
were considered as test dataset once. 

Different metrics were used to evaluate prediction performance, such as the root mean 
square error on the test dataset (RMSEV), the correlation between the predicted ∆BCS 
values in the test dataset and the actual ∆BCS values (r), the bias of the prediction, 
the slope, and the ratio of performance to interquartile distance (RPIQ). The bias 
corresponds to the average of the residuals, the slope corresponds to the slope of 
the line where the real ∆BCS values are plotted against the predicted ∆BCS values, 
and the RPIQ is the ratio between the interquartile range of the observed trait values 
and the RMSEV. All these metrics were calculated for each of the test datasets, and 
were subsequently averaged. The SD of the performance metrics across the four test 
datasets was also calculated and was considered as a reflection of robustness of the 
prediction method. The F-test was used to compare the RMSEV across prediction 
methods.

Prediction methods

Measures of 
prediction 
performance
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The prediction performance of the different prediction methods on the test datasets used 
to predict ∆BCS are summarized in Table 1. Neural networks had the lowest RMSEV (P 
< 0.05) as well as the greatest r and RPIQ; thus, for this dataset, NN was the prediction 
method which predicted ∆BCS with greatest accuracy. Partial least squares regression 
had a slightly greater (P < 0.05) RMSEV compared to NN. Generalized additive mixed 
model was the prediction method with the poorest prediction performance (P < 0.05). 
For all prediction methods, the SD of the RMSEV and r was low, indicating that the 
prediction performance were robust across all the test datasets. 

In Figure 1 is presented the average actual ∆BCS across DIM, as well as the average 
predicted values from PLSR, GAMM, and NN. Both GAMM and NN predictions perfectly 
followed the actual ∆BCS trend, while PLSR slightly over predicted the actual ∆BCS 
between week 3 and week 8 of lactation, and slightly under predicted actual ∆BCS 
between week 8 and week 12 of lactation.

Results

Figure 1. Body condition score (BCS) change (grey continuous line), ÄBCS 
predicted from partial least squares regression (orange long dashed line), 
generalized additive mixed model (green dotted line), and neural network (blue 
dot-dashed line).

 
Table 1. Prediction performance1 on the test dataset of partial least squares regression (PLSR), generalized 
additive mixed model (GAMM), and neural network (NN) to predict body condition score change across 120 
days in milk (DIM). 
 

Method RMSEV2,3 (SD2,3) Bias2 (SD2) r (SD) Slope (SE) RPIQ (SD) 

PLSR 

GAMM 

NN 

1.06 (0.010) 

1.10 (0.010) 

1.02 (0.010) 

0.00 (0.042) 

0.04 (0.057) 

0.00 (0.040) 

0.86 (0.004) 

0.84 (0.004) 

0.87 (0.004) 

1.00 (0.010) 

0.99 (0.010) 

0.99 (0.010) 

3.16 (0.11) 

3.04 (0.11) 

3.27 (0.10) 

1RMSEV = root mean square error in validation data set; r = Pearson correlation between the actual observed value of the 
trait and predicted value of the trait; SD = standard deviation; SE = standard error. 
2 Values presented are values *1,000 
3 BCS units 
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Body condition score, as well as ∆BCS, have been related to both fertility and health 
traits in lactating dairy cows (Berry et al., 2007; Buckley et al., 2003; Roche et al., 
2007). Body condition score change is used by producers as an indicator of cow 
energy status, and, as demonstrated in the present study, it can be predicted from 
the MIR milk spectra.

One of the main challenge in predicting ∆BCS is accounting for scorer subjectivity. In 
fact, BCS evaluation, even if executed by trained scorers, is a subjective measure. 
Roche et al. (2004) studied the variability of international scoring systems, and reported 
a strong correlation between the scoring systems across countries. Moreover, in the 
same study, Roche et al. (2004) reported that the accuracy of the BCS assessed 
depended also on whether the assessment was just visual or a combination of visual 
plus tactile appraisal of the cow. This suggests that BCS assessment is somewhat 
scorer-dependent and may vary according to the scale and the method (visual or tactile 
appraisal) used by the scorer. In the present study, BCS was assessed by trained 
scorers using both visual and tactile appraisal. Using ∆BCS as opposed to BCS in the 
development of the prediction should negate the impact of mean score differences 
among scorers. As a further strategy to minimize the impact of the BCS uncertainty 
on the development of prediction methods, only ∆BCS predicted from the splines on 
the same day of an actual BCS record were retained. Nonetheless, considering the 
uncertainty of the trait being predicted, perfect or almost perfect prediction performance 
should not be expected.

McParland et al. (2014) previously predicted ∆BCS across 305 day of lactation in 1,018 
lactating dairy cows from milk MIR using PLSR; they reported a correlation between the 
actual and the predicted ∆BCS of 0.75. Machine learning approaches have sometimes 
been shown to slightly improve the accuracy of predicting traits from milk MIR when 
compared to predictions developed using PLSR (Frizzarin et al., 2021b; Soyeurt et al., 
2020). Partial least squares regression has the potential to be an interpretable statistical 
method, but assumes linearity between the trait and the latent variables of the spectra 
(Wold et al., 2001). Generalized additive mixed model had low variability in the ∆BCS 
predictions, and NN is less generalizable than simpler models, requires more tuning 
parameters identification, and requires large data sets. Therefore, it is important to 
consider the advantages and disadvantages of the different statistical methods when 
deciding which method to use for the final spectra predictions.

While the present study related individual cow milk MIR to ∆BCS, the prediction models 
could also possibly extend to the routinely taken herd bulk tank samples to assess 
mean herd energy status. Nevertheless, herd averages could hide individual cows 
mobilizing considerable body condition. Whereas, the present study was based on milk 
MIR samples taken weekly, this is usually not always practical in commercial farms. 
Nonetheless, technologies are being developed to routinely assess milk samples using 
different regions of the spectrum. These wavelengths are simply overtones of the mid-
infrared region; hence, it could therefore possible to re-derive prediction equations for 
∆BCS using data from different regions of the spectrum. Body condition score change 
can be used by the farmers to take specific animal decisions, like diet requirements, or 
whether inseminate a cow or not. Lastly, the prediction of ∆BCS after milk recording 
permits to generate a large amount of phenotypes which can be included in breeding 
programs (e.g., as correlated traits in a multi-trait genetic evaluation).

The results from the present study demonstrated the potential of using MIR spectra to 
predict ∆BCS in early lactating dairy cows. Body condition score change was predicted 
with a correlation between the actual and the predicted ∆BCS of 0.87 using NN and 
spectra obtained during morning milking. The prediction of ∆BCS from MIR spectra 
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can be useful to obtain information on individual cow energy status, as well as routinely 
generate a phenotype for using in genetic evaluations.

This research was funded by a Science Foundation Ireland, Starting Investigator 
Research Grant, Infrared spectroscopy analysis of milk as a low cost solution to identify 
efficient and profitable dairy cows, 18/SIRG/5562, and has been supported in part by 
a research grant from Science Foundation Ireland and the Department of Agriculture, 
Food and Marine on behalf of the Government of Ireland under the Grant 16/RC/3835 
(VistaMilk).

Bauman, D. E., and W. B. Currie. 1980. Partitioning of nutrients during 
pregnancy and lactation: A review of mechanisms involving homeostasis and 
homeorhesis. J. Dairy Sci. 63:1514–1529. 

Berry, D. P., J. M. Lee, K. A. Macdonald, K. Stafford, L. Matthews, and J. 
R. Roche. 2007. Associations between body condition score, body weight, somatic 
cell count, and clinical mastitis in seasonally calving dairy cattle. J. Dairy Sci. 
90:637–648.

Buckley, F., K. O’sullivan, J.F. Mee, R.D. Evans, and P. Dillon. 2003. 
Relationships among milk yield, body condition, cow weight, and reproduction in 
spring-calved Holstein-Friesians. J. Dairy Sci. 86(7), 2308-2319.

Butler, W. R., and R. D. Smith. 1989. Interrelationships between energy 
balance and postpartum reproductive function in dairy cattle. J. Dairy Sci. 
72:767‑783.

De Marchi M.D., Toffanin V., Cassandro M. and Penasa M. 2014. Invited 
review: mid-infrared spectroscopy as phenotyping tool for milk traits. J. Dairy Sci. 
97, 1–16. 

Edmonson, A. J., I. J. Lean, L. D. Weaver, T. Farver, and G. Webster. 
1989. A body condition scoring chart for Holstein dairy cows. J. Dairy Sci. 72:68–78. 

Frizzarin, M., O’Callaghan, T.F., Murphy, T.B., Hennessy, D. and Casa, 
A., 2021a. Application of machine-learning methods to milk mid-infrared spectra 
for discrimination of cow milk from pasture or total mixed ration diets. J. Dairy 
Sci., 104(12), pp.12394-12402.

Frizzarin M., I.C. Gormley, D.P. Berry, T.B. Murphy, A. Casa, A. Lynch, 
and S. McParland, 2021b. Predicting cow milk quality traits from routinely available 
milk spectra using statistical machine learning methods. J. Dairy Sci. 2021, 104, 
7438–7447.

Grelet, C., J.F. Pierna, P. Dardenne, V. Baeten, and F. Dehareng, 2015. 
Standardization of milk mid-infrared spectra from a European dairy network. J. Dairy 
Sci, 98(4), pp.2150-2160. 

Grelet, C., J.F. Pierna, P. Dardenne, H. Soyeurt, A. Vanlierde, F. Colinet, 
C. Bastin, N. Gengler, V. Baeten,  and F. Dehareng, 2017. Standardization of 
milk mid-infrared spectrometers for the transfer and use of multiple models. J. Dairy 
Sci., 100(10), pp.7910-7921. 

Acknowledgments

References



145

ICAR Technical Series no. 26

Frizzarin et al.

McParland, S., E. Lewis, E. Kennedy, S. G. Moore, B. McCarthy, 
M. O’Donovan, S. T. Butler, J. Pryce, and D.P. Berry. 2014. Mid-infrared 
spectrometry of milk as a predictor of energy intake and efficiency in lactating dairy 
cows. J. Dairy Sci 97(9):5863-5871. 

Mevik B.H, R. Wehrens and K. H. Liland. 2019. pls: Partial Least Squares 
and Principal Component Regression. R package version 2.7-2. 

Nogalski, Z., Wrotski, M., Sobczuk-Szul, M., Mochol, M., and 
Pogorzelska, P. 2012. The Effect of Body Energy Reserve Mobilization on the Fatty 
Acid Profile of Milk in High-yielding Cows. Asian-Australasian Journal of Animal 
Sciences. Asian Australasian Association of Animal Production Societies. 

Perez Rodriguez P. and D. Gianola. 2020. brnn: Bayesian Regularization 
for Feed-Forward Neural Networks. R package version 0.8. 

R Core Team. 2021. R: A language and environment for statistical 
computing. R Foundation for Statistical Computing, Vienna, Austria. 

Roche, J. R., P. G. Dillon, C. R. Stockdale, L. H. Baumgard, and 
M.J. VanBaale. 2004. Relationships among international body condition scoring 
systems. J. Dairy Sci. 87:3076–3079

Roche, J. R., K. A. Macdonald, C. R. Burke, J. M. Lee, and D. P. Berry. 
2007. Associations among body condition score, body weight, and reproductive 
performance in seasonal-calving dairy cattle. J. Dairy Sci. 90:376–391. 

Roche, J. R., N. C. Friggens, J. K. Kay, M. W. Fisher, K. J. Stafford, and 
D. P. Berry. 2009. Invited review: body condition score and its association with 
dairy cow productivity, health, and welfare. J. Dairy Sci. 92:5769–5801. 

Soyeurt, H., P. Dardenne, F. Dehareng, G. Lognay, D. Veselko, M. 
Marlier, C. Bertozzi, P. Mayeres, and N. Gengler. 2006. Estimating fatty acid 
content in cow milk using mid-infrared spectrometry. J. Dairy Sci 89(9):3690-3695. 

Soyeurt H., C. Grelet, S. McParland, M. Calmels, M. Coffey, A. Tedde, 
P. Delhez, F. Dehareng, and N. Gengler. A comparison of 4 different machine 
learning algorithms to predict lactoferrin content in bovine milk from mid-infrared 
spectra. J. Dairy Sci 103.12 (2020): 11585-11596.

Wold, S., M. Sjostrom, and L. Eriksson. 2001. PLS-Regression: A basic 
tool of chemometrics. Chemom. Intell. Lab. Syst. 58:109–130. 

Wood S. and F. Scheipl. 2020. gamm4: Generalized Additive Mixed Models 
using ‘mgcv’ and ‘lme4’. R package version 0.2-6. 



146



147

ICAR Technical Series no. 26

Valorization of milk spectra: data mining of milk infrared 
spectra to assess transition success

M. Bahadi1,2, D. Warner1, R. Moore1, R. Lacroix1, R. Cue2 and D.E. Santschi1

1Lactanet, 555 Boulevard des Anciens-Combattants, H9X 3R4, 
Sainte Anne de Bellevue, QC, Canada 

Corresponding Author: mbahadi@lactanet.ca 
2McGill University, Department of Animal Science, 21111 Lakeshore, H9X 3V9, 

Sainte Anne de Bellevue, QC, Canada

The transition period is recognized as a critical phase in a cow’s lactation. Poor transition 
can often be associated with clinical or subclinical diseases, but there is still a proportion 
of cows where poor transition cannot be linked to routinely measurable metabolites in 
milk. Also, millions of milk infrared spectra are generated in milk recording laboratories 
every year. These spectra contain comprehensive information about milk chemical 
composition. The objective of this study was to evaluate whether milk spectra can be 
mined in search for minor milk components that are not routinely measured in monthly 
milk samples and that might be potential biomarkers to assess transition success. First 
test day records within lactation and their corresponding spectra between 2015 and 
2020 were extracted from Lactanet’s database for Holstein cows in Québec, Canada. 
A categorical variable was created as a proxy for transition management based on 
the value of Transition Cow Index (TCI). ANOVA–simultaneous component analysis+ 
(ASCA+) was used to test the effect of the TCI category on spectral variability. In 
the first round of analysis, spectra of samples collected during the first two weeks of 
lactation (N=238,773) had the highest variability attributed to the TCI category, which 
peaked on 8-11 DIM at 3.02%. This variability falls to 1.41% on week 4 of lactation. 
Spectral variabilities attributed to the other studied factors, namely DIM and parity (2, 
3+), were <1% and <0.5%, respectively. The second round of analysis included 41,464 
spectra of samples collected during the first two weeks of lactation. The results of the 
analysis revealed that low TCI category had direct correlation with spectral features 
of milk fat and protein and inverse correlation with those of lactose. In addition, direct 
relationship was observed between spectral features that can be attributed to milk 
fat, protein, creatine, phosphate, sulfur containing compounds and trans fatty acids.

These findings suggest that more frequent milk sampling is needed during the first two 
weeks of lactation and monitoring additional minor milk components might be useful 
in assessing transition success. To conclude, milk infrared spectra represent a rich 
source of information regarding the chemical composition of milk, and they can be 
mined to gain insights and detect trends to assess transition success in dairy cows.

Keywords: Cow transition, FTIR spectroscopy, biomarkers.
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A good transition cow management is important as it affects the entire productive life of 
a dairy cow. The Transition Cow Index® (TCI) was developed by Ken Nordlund at the 
University of Wisconsin (Nordlund, 2006). The principle involves a 13-factor equation 
used to predict how much milk a cow is expected to produce during her 305-day 
lactation. Factors included in the equation are environmental (calving month), related to 
the cow (breed, parity) or related to her current (days in milk at first test, lactation start 
reason) or previous lactation (production, number of days dry, lactation start reason, 
lactation duration, last test day somatic cell score). At the cow’s first test date, the actual 
projected 305-day milk yield is compared to this prediction. If the cow’s production is 
exactly as predicted, the TCI is 0. If the cow produces more than predicted, the TCI 
will be positive; if less, then the TCI will be negative. A TCI value can be calculated 
for all second and greater lactation cows that are between 5 and 39 DIM at their first 
test day. The TCI is an objective way of evaluating the start of lactation for each cow. 
Since a good start to lactation is generally a promising sign for a good performance 
in overall lactation, an increase in the TCI suggests that cows will have a higher milk 
yield over the coming lactation. Generally speaking, a 100-point increase in a herd’s 
average TCI corresponds to a milk yield increase of 93 kg of milk per cow for 305 days 
of production (Lactanet data, 2014). 

Previous work has demonstrated that a very high proportion of 1st lactation cows have 
elevated milk beta-hydroxybutyrate (BHB) on their first test (Santschi et al., 2016a) 
indicating an excessive body reserve mobilization which could be linked to poor 
transition, excessive stress related to the onset of lactation, or a normal biological 
response. The ideal detection method for subclinical disorders in early lactation cows 
would be blood monitoring of specific metabolites. However, this technique is laborious, 
expensive, and intrusive. Recently, several studies suggested the use of milk spectral 
information and Fourier-transformed infrared (FTIR) spectroscopy as a metabolic 
profiling tool, specifically in early lactation (de Roos et al., 2007, Santschi et al., 2016a, 
Pryce et al., 2019). Around the world, routine testing for BHB has become a fast and 
inexpensive way to monitor herd-level prevalence of hyperketonaemia (Santschi et 
al., 2016b). It is hypothesized that routine testing of early lactation milk could therefore 
become an effective and affordable screening tool to identify individual cows needing 
specific attention. Recent studies have tried to predict specific metabolites with variable 
precision (Barbano et al., 2015, Pape et al., 2018, Luke et al., 2019), often by using 
FTIR to predict a single blood component. The present study aims at looking at overall 
spectral signature rather than trying to predict specific metabolites. This approach 
aims at screening the differences in spectral signature, and then eventually identify the 
possible metabolites involved, using a historical database of several hundred thousand 
Canadian Holstein cows, and using TCI as the classification variable to group cows 
based on their status.

First test within lactation records and their corresponding spectra between 2015 and 
2020 were extracted from Lactanet’s database. The total number of extracted records 
was 238,773. A categorical factor was created, TCI_CAT, and three levels were defined 
for it as follow: 1) high, which contained records with TCI value ≥66th percentile and 
they represented successful transition, 2) mid, which contained records with TCI value 
>33rd percentile and <66th percentile and they were dropped to enhance the contrast 
in differences between records in the other two categories, 3) low, which contained 
records with TCI value ≤33rd percentile and they represented poor transition.

Materials and 
methods

Assembly of the 
dataset

Introduction 
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ANOVA simultaneous component analysis + (ASCA+) was chosen to test the effect 
of the TCI category on the spectral dataset. In the first round of analysis, the spectral 
dataset was divided into subsets according to days in milk (DIM): 5-7 DIM, 8-11 DIM, 
12-14 DIM, week 3, week 4, week 5&6. The ASCA+ model contained the following 
factors: the TCI category, parity groups (second, third and higher) and DIM. In the 
second round of analysis, data and spectral records were limited to those that were 
collected during the first two weeks of lactation (N=41,464) and the spectral dataset 
was divided into subsets according to parity (i.e., all, second, third and higher). 

Inspection of the loading spectrum of the TCI category factor allowed the association 
of specific milk components with the TCI category effect. High loadings, positive or 
negative, at characteristic wavenumbers of milk components were observed and were 
interpreted according to methodology described elsewhere (Bahadi et al., 2021). 

The first round of analysis revealed that milk spectra could capture more variability 
related to cow transition in the first two weeks of lactation (Table 1), which peaked 
in 8-11 DIM at 3.02%. This variability falls to 1.41% on week 4 of lactation. Spectral 
variabilities attributed to the other studied factors, namely DIM and parity (i.e., second, 
third and higher), were <1% and <0.5%, respectively. This observation means that the 
current first test date window of 6 weeks might not be tight enough to capture differences 
in milk composition between cows that do well or poorly during the transition period. 
To better understand these differences, the first test date window might need to be 
shortened to less than 6 weeks, preferably to two weeks of lactation, in order to better 
capture these differences in milk composition. 

Inspection of the loading spectrum of the TCI_CAT variable reveals positive loadings 
at characteristic wavenumbers of milk fat and protein, and negative loadings at 
wavenumbers attributed to lactose. This observation suggests the existence of an 
inverse relationship between fat and protein, on one hand, and lactose, on the other 
hand, in milk samples belonging to either low or high TCI category. Indeed, when we 
inspected the means of fat, protein and lactose that were determined by the lab for the 
studied samples, we observed that milk samples from cows classified in the low TCI 
category had higher fat and protein content and lower lactose content in comparison 
with milk samples coming from cows in the high TCI category. In other words, TCI 
values had an inverse relationship with fat and protein content and a direct one with 
lactose content in milk samples. 

In the second round of analysis, variability in minor milk components’ spectral features 
was observed and it was attributed to differences in milk composition in samples coming 
from cows assigned to low and high TCI categories. These minor milk components 
are sulfur containing compounds, trans fatty acids, creatine, and phosphate. Hence, 
these components might be candidate biomarkers for monitoring transition success. 
In fact, sulfur containing compounds were already reported as probable biomarkers 
to monitor transition success in studies done on cows’ blood plasma and liver (Zhou 
et al., 2017). In addition, trans fatty acids have already been reported in the literature 
as contributors to inflammation in bovine mammary epithelial cells (Rezamand and 
McGuire, 2011). The variability in lactose, sulfur containing compounds and trans fatty 
acids was highest during the first two weeks of lactation and in milk samples coming 
from cows in their third parity or higher. Cows that suffer from poor transition in a 
lactation become more susceptible to inflammation and health issues in subsequent 

Testing the effect of 
the TCI category on 
spectral data

Attributing milk 
components to the 
TCI category effect 

Results and 
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lactations, which might mean more variability in candidate transition biomarkers in 
cows with higher parities.

The findings of this study suggest that the first test date window might need to be 
shortened to less than 6 weeks and it is preferable to do the first test during the first 
two weeks of lactation in order to capture the differences in milk composition between 
cows that do well or poorly during their transition period. In addition, monitoring more 
minor milk components might be useful in assessing transition success. Milk infrared 
spectra represent a rich source of information regarding the chemical composition of 
milk, and they can be mined to gain insights and detect trends to assess transition 
success in dairy cows.

This work was supported by Mitacs through the Mitacs Accelerate program.
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Term 5-7 D1 8-11 D 12-14 D W32 W4 W5&6 
Parity 0.48 0.34 0.44 0.25 0.31 0.28 
DIM 0.80 0.98 0.16 0.80 0.25 0.24 

TCI_CAT 2.10 3.02 2.14 1.65 1.41 1.88 
1D = Days  
2W = Week 

Conclusion 

Acknowledgement

References



151

ICAR Technical Series no. 26

Bahadi et al.

Pryce, J., T. Nguyen, P. Ho, T. Luke, S. Rochfort, W. Wales, P. Moate, 
L. Marett, G. Nieuwhof, and M. Abdelsayed. 2019. Applying next generation 
phenotyping strategies for genetic gain in dairy cattle. Pages 390-393 in Proc. Proc. 
Assoc. Advmt. Anim. Breed. Genet.

Rezamand, P. and M. McGuire. 2011. Effects of trans fatty acids on markers 
of inflammation in bovine mammary epithelial cells. Journal of Dairy science 
94(1):316-320.

Santschi, D., R. Lacroix, J. Durocher, M. Duplessis, R. Moore, and 
D. Lefebvre. 2016a. Prevalence of elevated milk β-hydroxybutyrate concentrations 
in Holstein cows measured by Fourier-transform infrared analysis in Dairy Herd 
Improvement milk samples and association with milk yield and components. Journal 
of Dairy science 99(11):9263-9270.

Santschi, D., R. Lacroix, R. Moore, F. Miglior, and D. Lefebvre. 2016b. 
Impacts of early lactation hyperketonemia on reproduction and 305-d milk 
production. Journal of Animal Science 94:611-611.

Zhou, Z., E. Trevisi, D. Luchini, and J. Loor. 2017. Differences in liver 
functionality indexes in peripartal dairy cows fed rumen-protected methionine or 
choline are associated with performance, oxidative stress status, and plasma amino 
acid profiles. Journal of Dairy science 100(8):6720-6732.



152



153

ICAR Technical Series no. 26

Within day variation in milk and blood metrics for 
hyperketonemic and non-hypoketonemic dairy cows 

C. Seely1, J.A.A. McArt1 and D.M. Barbano2

1Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, 
NY 14853, USA 

2 Northeast Dairy Foods Research Center, Department of Food Science, Cornell 
University, Ithaca, NY 14853, USA 

Corresponding Author: Barbano1@aol.com

Dairy cows often enter a state of energy deficit in early lactation, leading to an increase 
in plasma concentrations of non-esterified fatty acids (NEFA) and beta-hydroxybutyrate 
(BHB). Currently, diagnosis of excessive energy deficit is done on farms using handheld 
blood BHB meters. However, this process is laborious and can become costly when 
used as a whole-herd screening method. Several studies have investigated the use of 
Fourier transform mid-infrared (FTIR) estimates to predict excessive energy deficit, but 
these studies relied on a single, test-day DHIA milk sample with no knowledge of actual 
blood NEFA or BHB concentrations. We determined the diurnal variation in plasma 
NEFA and BHB as well as FTIR estimates of milk BHB, milk predicted blood NEFA, and 
milk fatty acids with particular focus on differences between groups of cows that were 
hyperketonemic or non-hyperketonemic. We collected blood samples every 2 h for 5 
consecutive days from 28 multiparous Holstein cows that were between 3 and 9 days 
in milk. Cows were housed in a tie-stall facility and offered free choice access to water 
and a TMR that was delivered once a day at 0900 h. Blood samples were analyzed 
for BHB and NEFA concentrations, and cows were classified into hyperketonemia 
groups based on their average daily BHB concentration. If a cow’s average daily BHB 
was >1.2 mmol/L for >3 study days, she was assigned to the hyperketonemia group 
(n=13). Alternatively, if her average daily BHB was >1.2 mmol/L for <2 study days, she 
was assigned to the non-hyperketonemia group (n=15). We found clear and consistent 
diurnal patterns in plasma BHB and NEFA as well as FTIR estimates of milk BHB, 
milk predicted blood NEFA, and milk fatty acids. Interestingly, these diurnal differences 
were much more predictable when analyzing milk, with a greater ability to separate 
hyperketonemic from non-hyperketonemic cows. Our results support the use of FTIR 
estimates of milk BHB and milk predicted blood NEFA as a tool in diagnosing HYK, 
however time relative to feeding should be considered when analyzing results. Milk 
fatty acid metrics on a relative basis may also be useful to separate hyperketonemic 
from non-hyperketonemic cows. In particular, these results support the use of high 
frequency milk monitoring and measurement to detect alterations in early lactation 
health of dairy cows.

Dairy cows often enter a state of energy deficit in early lactation, leading to an increase 
in plasma concentrations of non-esterified fatty acids (NEFA) and beta-hydroxybutyrate 
(BHB). Currently, diagnosis of excessive energy deficit is done on farms using handheld 
blood BHB meters. However, this process is laborious and can become costly when 
used as a whole-herd screening method. Several studies have investigated the use 
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of Fourier transform mid-infrared (FTIR) estimates to predict excessive energy deficit 
through milk (Denis-Robichaud et al., 2014; Santschi et al., 2016; Bach et al., 2019), but 
many of these studies relied on a single, test-day DHIA milk sample with no knowledge 
of actual blood NEFA or BHB concentrations. Here we present our investigation of 
the diurnal variation in plasma NEFA and BHB as well as FTIR estimates of milk BHB 
and predicted blood NEFA, with particular interest in differences between groups of 
cows that were hyperketonemic or non-hyperketonemic. This information will improve 
knowledge and usability of on-farm testing results and promote discussion of the 
benefits of routine milk testing and analysis. 

We collected blood samples every 2 h for 5 consecutive days from 28 multiparous 
Holstein cows that were between 3 and 9 days in milk. Cows were housed in a tie-stall 
facility and offered free choice access to water and a TMR that was delivered once a 
day at 0900 h. Blood samples were analyzed for BHB and NEFA concentrations, and 
cows were classified into hyperketonemia groups based on their average daily BHB 
concentration. If a cow’s average daily BHB was >1.2 mmol/L for >3 study days, she 
was assigned to the hyperketonemia group (n=13). Alternatively, if her average daily 
BHB was >1.2 mmol/L for <2 study days, she was assigned to the non-hyperketonemia 
group (n=15). 

We saw the lowest concentrations of BHB just prior to feeding, at 0700 h, with a 
steady rise following feed delivery (Figure 1A). Not surprisingly, BHB was higher in 
the hyperketonemic cows than the non-hyperketonemic cows (Figure 1B). Unlike BHB 
however, we saw a peak in NEFA just prior to feeding at 0700 h, with concentrations 
falling quickly after feed delivery (Figure 1C). The hyperketonemic cows had greater 
concentrations of NEFA than the non-hyperketonemic cows (Figure 1D). 

To understand the effect of hyperketonemic on the daily fluctuations of BHB and NEFA, 
we calculated the difference between the daily maximum and minimum concentrations 
for each metabolite by hyperketonemia group. The hyperketonemic cows experienced 
a nearly two-fold greater difference between daily maximum and minimum BHB 
concentration as compared to the non-hyperketonemic cows. Interestingly, the 
difference between daily maximum and minimum concentrations of NEFA were 
relatively similar for both the hyperketonemic and non-hyperketonemic cows. 

We saw similar diurnal findings with mid-FTIR milk predicted metabolites, however 
with a general lag in peak or nadir concentrations than blood. The lowest milk BHB 
and milk predicted blood NEFA concentrations were at the morning milking just prior 
to feeding (Figure 2A, 2C). As for blood, predicted milk BHB and milk predicted blood 
NEFA were higher in hyperketonemic than non-hyperketonemic cows (Figure 2B, 2D). 
However, unlike blood, difference in milk BHB between hyperketonemic groups was 
more consistent, and the pattern of diurnal variation in milk predicted blood NEFA 
never overlapped between the two groups. 

Study design and 
results

Blood results

Milk results
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Figure 1. Concentrations of BHB and NEFA from multiparous Holstein cows classified 
as hyperketonemic (HYK; average daily mean BHB >1.2 mmol/L for >3 study days, 
red dashed line) or non-hyperketonemic (non-HYK; average daily mean BHB 
>1.2 mmol/L for <2 study days, solid blue line). Black arrows indicate time of feed 
delivery (Adapted from Seely et al., Journal Dairy Science, In Press).

Figure 2. Concentrations of mid-FTIR milk predicted metabolites (milk BHB 
and milk predicted blood NEFA) from multiparous Holstein cows classified as 
hyperketonemic (HYK; average daily mean BHB >1.2 mmol/L for >3 study 
days, red dashed line) or non-hyperketonemic (non-HYK; average daily mean 
BHB >1.2 mmol/L for <2 study days, solid blue line). Black arrows indicate time 
of feed delivery; M1 = morning milking, M2 = afternoon milking, M3 = evening 
milking (Unpublished data from Seely, McArt, and Barbano).
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Cows were milked 3 times per day. Therefore, each milk sample theoretically 
represents the average of what happened in the blood for the 8 h period prior to 
milking. We averaged the 2 h blood testing data over each 8 h period, prior to each 
milking, to achieve better correspondence of the time period for milk and blood results. 
Milk predicted blood NEFA, milk BHB, and milk fatty acids were measured at each 
milking using a mid-FTIR milk analysis (Delta FTA, Perkin-Elmer Corp., Drachten, The 
Netherlands). The data for milk predicted blood NEFA and blood NEFA over consecutive 
milkings for the hyper and non-hyperketonemic groups of cows are shown in Figures 
3 and 4. Both the blood NEFA and milk estimated blood NEFA cycled during each 24 
h period with a slight lag in timing of the cycling. Both the blood NEFA and the milk 
estimated blood NEFA clearly separated the two groups of cows.

Figure 3. Milk estimated blood NEFA over consecutive milkings.

Figure 4. Blood NEFA (2 h samples averaged across the 8 h period prior to milking) 
plotted as a function of consecutive milkings.
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The concentration of milk BHB was also measured by infrared milk analysis and 
concentration in milk also cycled (data not shown).

Milk fatty acids (denovo, mixed origin, and preformed) were also measured at 
every milking by mid-infrared milk analysis (Figures 5, 6, and 7), as described by 
Wojciechowski et al., 2016 and Woolpert et al., 2016. The comparison of relative 
concentration for the 3 different groups of milk fatty acids between hyper and non-
hyperketonemic groups of cows was clearly separated for all three milk fatty acid 
metrics. The non-hyperketonemic cows had higher relative concentrations of de 
novo and mixed origin milk fatty acids and lower performed milk fatty acids than the 

Figure 6. Mixed origin milk fatty acids (relative %) measured by mid-infrared milk 
analysis.  Fresh feed offered immediately after milking 3, 6, and 9. 

Figure 5. De novo milk fatty acids (relative %) measured by mid-infrared milk 
analysis.  Fresh feed offered immediately after milking 3, 6, and 9.
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hyperketonemic cows. The cycle phasing of the relative concentrations of the de novo 
and mixed origin fatty acids had the opposite phasing when compared with the phasing 
of the preformed milk fatty acid cycling. Cycling of the relative concentration of milk fatty 
acid groups (Figures 5, 6, 7) was related to cycling of blood NEFA and the cycling of 
the fatty acid groups was consistent with the milk estimated blood NEFA cycling (Figure 
3). When milk estimated blood NEFA was at a maximum of a cycle, preformed fatty 
acids were also at the maximum. Immediately before the cows were given fresh feed, 
milk estimated blood NEFA and relative concentration of milk preformed fatty acids 
were at a maximum and the de novo and mixed origin fatty acids were at a minimum.  

We hypothesize that the differences between peak and nadir blood and milk metabolites 
are due to milk having a higher correlation with an 8-hour average of blood metabolite 
concentrations rather than a single blood sample. This makes biological sense and 
also supports the idea that milk analysis might be an improved method of representing 
a cow’s overall energy status than a single snapshot in time as currently provided with 
blood sampling.

We would like to acknowledge Dr. Kathryn Bach, the post-doctoral associate who 
assisted with study organization. Our study was funded by the USDA National Institute 
of Food and Agriculture, Hatch project no. 1017096. 
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Figure 7. Preformed milk fatty acids (relative %) measured by mid-infrared milk 
analysis.  Fresh feed offered immediately after milking 3, 6, and 9. 

Acknowledgement

References

 
 

 
 



159

ICAR Technical Series no. 26

Seely et al.

Denis-Robichaud, J., J. Dubuc, D. Lefebvre, and L. DesCoteaux. 2014. 
Accuracy of milk ketone bodies from flow-injection analysis for the diagnosis of 
hyperketonemia in dairy cows. J. Dairy Sci. 97:3364-3370.

Santschi, D.E.,R. Lacroix, J. Durocher, M. Duplessis, R.K. Moore, 
and D.M. Lefebvre. 2016. Prevalence of elevated milk beta-hydroxybutyrate 
concentrations in Holstein cows measured by Fourier-transform infrared analysis 
in Dairy Herd Improvement milk samples and association with milk yield and 
components. J. Dairy Sci. 99:9263–9270.

Wojciechowski, K.L, and D.M. Barbano. 2016. Prediction of fatty acid 
chain length and unsaturation of milk fat by mid-infrared milk analysis. J. Dairy Sci. 
99:8561-8570.

Woolpert, M.E., H. M. Dann, K.W. Cotanch, C. Melilli, L.E. Chase, 
R.J. Grant, and D.M. Barbano. 2016. Management, nutrition, and lactation 
performance are related to bulk tank milk de novo fatty acid concentration on 
northeastern US dairy farms. J. Dairy Sci. 99:8486-8497.



160



161

ICAR Technical Series no. 26

New traits predicted from milk mid-infrared spectra to 
reduce incidence of subclinical ketosis

A. Köck1, K. Schodl1 2, B. Fuerst-Waltl2, H. Schwarzenbacher1, L.M. Dale3, 
A. Werner3, M. Mayerhofer1, F.J. Auer4, C. Grelet5, J. Sölkner2, L. Rienesl2, 

N. Gengler6, J. Leblois7 and C. Egger-Danner1

1ZuchtData EDV-Dienstleistungen GmbH, Dresdner Str. 89, 1200 Vienna, Austria
Corresponding Author: koeck@zuchtdata.at

2University of Natural Resources and Life Sciences, Vienna, 1180 Vienna, Austria
3Regional State Association for Performance and Quality Inspection in Animal Breeding 

of Baden Württemberg, Heinrich-Baumann-Str. 1-3, 70190 Stuttgart, Germany 
4LKV-Austria, Dresdner Str. 89, 1200 Vienna, Austria

5Walloon Agricultural Research Centre, Gembloux, Belgium
6University of Liege, Gembloux Agro-Bio Tech, Gembloux, Belgium

7EEIG European Milk Recording (EMR), Ciney, Belgium

Ketosis is the most frequent metabolic disease in dairy cows. Recently, several 
new mid-infrared (MIR) traits have been derived that can be predicted from routine 
milk samples and provide a more accurate indication of subclinical ketosis than the 
commonly used fat-to-protein ratio, such as KetoMIR and other MIR-predicted traits 
(e.g. blood beta‑hydroxybutyrate, acetone, citrate). KetoMIR was developed by LKV 
Baden-Württemberg based on ketosis diagnoses. KetoMIR is a three-class ketosis 
index: 1 = low ketosis risk, 2 = moderate ketosis risk, and 3 = high ketosis risk. 
The increased ketosis risk based on the KetoMIR index was associated with lower 
average herd milk yield (-1,975 kg milk). The interval from calving to first service was 
prolonged by +36 days, as was the calving interval with +58 days. Mean herd somatic 
cell count in first and higher lactations was increased by 60,000 and 134,000 cells/
ml, respectively. So far, KetoMIR results have only been used for herd management. 
Feeding advisors use this new MIR trait to assess and, if necessary, adjust the 
feeding situation on the farm in the dry cow period and early lactation. Furthermore, 
a MIR equation for beta‑hydroxybutyrate in blood was derived, which has already 
been validated on 49 Austrian farms and 670 dairy cows. For this purpose, capillary 
blood was analyzed for beta-hydroxybutyrate concentration in all cows during milk 
recording in early lactation (1st and 2nd test day after calving) using a handheld device 
(WellionVet BELUA, MED TRUST Handels GmbH, Marz, Austria). The result from 
the handheld device was considered as the gold standard for detecting subclinical 
ketosis (betahydroxybutyrate concentration > 1.2 mmol/l). Blood beta-hydroxybutyrate 
predicted from MIR had a sensitivity of 56% and a specificity of 81% for detecting cows 
with subclinical ketosis. Currently, data from Austria are being integrated into the MIR 
equation for beta-hydroxybutyrate to improve the equation. First genetic analyses 
showed high heritabilities between 0.16 and 0.30 for MIR-predicted traits. The moderate 
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to high genetic correlations between MIR-predicted traits and subclinical ketosis 
suggest that consideration of these traits in selection would help to reduce subclinical 
ketosis.

Keywords: mid-infrared, subclinical ketosis, herd management, genetic selection

Metabolic disorders occur more frequently after calving. In this phase, the energy 
demand due to milk production is higher than the feed intake, resulting in a more or 
less pronounced negative energy balance. Although the majority of metabolic disorders 
are not visible, but are present subliminally, these metabolic disturbances lower the 
cow’s resistance and increase, for example, the risk of mastitis or hoof diseases 
(Pieper and Mahlkow-Nerge, 2017). 

Ketosis is the most common metabolic disease of the dairy cow. Since affected cows 
usually show no signs of disease at all, detection is very difficult. Recently, several 
new mid-infrared (MIR) traits have been derived that can be predicted from routine 
milk samples and provide a more accurate indication of subclinical ketosis than the 
commonly used fat-to-protein ratio, such as KetoMIR and other MIR-predicted traits 
(e.g. beta-hydroxybutyrate (BHB) and acetone). 

KetoMIR was developed by the LKV Baden-Württemberg (Dale et al., 2018). Using 
veterinary ketosis diagnoses and the MIR spectra of milk samples from the first 120 
days of lactation from milk recording, KetoMIR, a three-level ketosis index, was 
developed (Dale et al., 2018). Class 1 indicates low ketosis risk, class 2 indicates 
medium ketosis risk, and class 3 indicates high ketosis risk. 

The KetoMIR index has a sensitivity of 68% and a specificity of 81% to detect clinical 
ketosis (Dale et al., 2018). KetoMIR is an alert system to help in herd management 
during the first 120 days of lactation, but it is not diagnostic. 

In Austria, the average frequency of cows with a positive KetoMIR result is 14% 
at the farm level. Highly elevated frequencies of >30% are found in 8.6% of farms. 
The increased ketosis risk based on the KetoMIR index was associated with lower 
average herd milk yield (-1,975 kg milk). Mean herd somatic cell count in first and 
higher lactations was increased by 60,500 and 134,400 cells/ml, respectively. The 
interval from calving to first service was prolonged by +36.5 days, as was the calving 
interval with +58.2 days.

A MIR equation for beta-hydroxybutyrate (BHB) in blood was available from European 
Milk Recording (EMR), which has already been validated on 49 Austrian farms and 
670 dairy cows. For this purpose, capillary blood was analyzed for BHB concentration 
in all cows during milk recording in early lactation (1st and 2nd test day after calving) 
using a handheld device (WellionVet BELUA, MED TRUST Handels GmbH, Marz, 
Austria). The result from the handheld device was considered as the gold standard for 
detecting subclinical ketosis (BHB > 1.2 mmol/l). Blood BHB predicted from MIR had 
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a sensitivity of 55.9% and a specificity of 81.4% for detecting cows with subclinical 
ketosis, which was higher than for the commonly used fat-protein ratio > 1.5 (Table 1).

Heritabilities and genetic correlations for BHB measured with the handheld device and 
MIR predicted ketosis risk traits are shown in Table 2. Heritabilities for all traits were 
high, 0.26 for BHB results gained by the handheld device and between 0.16 and 0.30 
for MIR predicted traits. The heritability estimates found in our study were consistent 
with previous literature results (Belay et al., 2017; Hamann et al., 2017; Benedet et 
al., 2020). The genetic correlations between BHB concentration from the handheld 
device and the traits predicted by MIR ranged from 0.60 to 0.73. Genetic correlations 
between BHB results gained by a handheld device and MIR predicted traits recorded 
at the same time could not be found in the literature. However genetic correlations 
with clinical ketosis from veterinary diagnoses were available. A moderate genetic 
correlation of 0.47 between predicted blood BHB at first test day and clinical ketosis 
was reported by Belay et al. (2017). Because the standard errors of the estimates in our 
study were high, the results should be taken with caution. However, the moderate to 
high genetic correlations between MIR-predicted traits and subclinical ketosis suggest 
that consideration of these traits would reduce subclinical ketosis. 

Recently, several new MIR traits have been derived that can be predicted from routine 
milk samples and provide a more accurate indication of subclinical ketosis than the 
commonly used fat-to-protein ratio, such as KetoMIR, beta-hydroxybutyrate and 
acetone. Preliminary results suggest that these new traits could be used in both herd 
management and breeding programs to reduce the incidence of subclinical ketosis.

Table 1. Sensitivity and specificity given that cows with subclinical ketosis have a beta-
hydroxybutyrate-concentration > 1.2 mmol/l using the handheld device. 
 

 Sensitivity Specificity 
Blood beta-hydroxybutyrate > 200µmol/L 55.9 81.4 
Fat-protein ratio > 1.5 39.2 83.1 

 
 
 
Table 2. Heritabilities (on diagonal) and genetic correlations (above diagonal) with standard errors in 
brackets. 
 

 
BHB – 

handheld 
device 

KetoMIR BHB-MIR Aceton-MIR Fat-protein-
ratio 

BHB – handheld 
device 0.26 0.61 (0.35) 0.60 (0.32) 0.73 (0.33) 0.60 (0.37) 

KetoMIR  0.30 0.48 (0.37) 0.35 (0.39) 0.20 (0.45) 
BHB-MIR   0.19 n.c. 1 0.72 (0.32) 
Aceton-MIR    0.16 0.61 (0.38) 
Fat-protein-ratio     0.20 

1 n.c. = no convergence 
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Livestock farming, especially dairy breeding, has a significant influence on environmental 
balance, accounting for about 50% of greenhouse gases (GHG) emissions from the 
primary sector. To increase the environmental sustainability of the dairy sector, 
even in the face of growing interests of the consumers towards this topic, a holistic 
approach is needed. Methane and carbon dioxide emissions have been shown to be 
heritable in cattle, providing the basis to apply genetic selection for their reduction. 
Furthermore, it is necessary to consider that GHG recording is complex, expensive 
and time consuming. In this context national breeding programs can provide relevant 
contributions. For this reason, the Italian Association of Holstein, Brown and Jersey 
breeders (ANAFIBJ) is working on data collection of innovative phenotypes and, in the 
future, to set-up routine recording in commercial dairy farms. Since 2018 ANAFIBJ, 
has started to record GHG data on young genotyped Italian Holstein bulls passing 
into the Genetic Center. For this purpose, the GreenFeed system (C-Lock Inc., Rapid 
City, SD) has been installed and used. In three years, a dataset of more than 11,200 
phenotypic records collected on more than 200 young bulls has been set-up. Preliminary 
analyses showed that animals emit 223,6 g of CH4/d with a heritability (h2) of 0.396. 
Thanks to this experience ANAFIBJ has the intention to contribute further and set up 
a routine recording system for these phenotypes implementing experimental protocols 
to apply in commercial farms. For this purpose, Laser Methane Detector Mini (LMD, 
Crowcon, Abingdon, UK) is currently being tested at ANAFIBJ Genetic Center and a 
data collection protocol is under investigation. Once a standard protocol will be defined, 
individual CH4 emissions will be collected in 3,000 genotyped Italian Holstein dairy cows 
(some of them daughters of the young bulls recorded at the Genetic Center) distributed 
in 100 commercial farms throughout the country. At the Genetic Center, in addition, 
several phenotypes will be collected in order to better define the GHG data emission. 
Main biometric measures will be recorded and samples of ruminal fluid and faeces will 
be collected. Biological samples will be frozen and stored at -80°C, until instrumental 
and bioinformatic analysis. Activities in commercial farms and in experimental stations 
will allow to study the interaction between host and environmental microbiome, and to 
evaluate the reliability of faeces as a proxy of rumen sample. Furthermore, it will be 
possible to estimate the genetic parameters and to develop models for genetic and 
genomic evaluations of methane emissions.
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Agriculture and livestock sectors are recognized as important contributors to global 
temperature increase (Cassandro et al., 2013). Livestock farming, with particular regard 
to ruminants, is linked to GHG emissions due to enteric fermentation. Furthermore, 
livestock sector indirectly contributes to GHG emissions through activities related to 
feed production, manure spreading and storage, nitrogenous fertilisers, fossil fuels 
consumption and deforestation.

Methane and carbon dioxide emissions have been shown to be heritable, providing 
the basis to apply genetic selection for their reduction (Pickering et al., 2015; Lassen 
and Løvendahl,, 2016). Such program could be applied directly, by selecting for 
breath measurements, but also using indirect selection including indicator traits such 
as feed intake (de Haas et al., 2017). National breeding program can provide relevant 
contribution to reduce GHG emissions. The objective of this study was to present 
the ANAFIBJ experience and future perspective for GHG data collection and set up 
of a routine protocol for commercial and experimental Italian Holstein dairy farms. 
Furthermore, it will allow to study in deep the knowledge of the microbiome-host and 
environment-microbiome interactions and to evaluate the reliability of faeces as a 
proxy of rumen sample.

Animals involved in this preliminary study were young genotyped Italian Holstein bulls 
undergoing progeny test in the Genetic Center of the ANAFIBJ as reported by Callegaro 
et al. (2022). These young bulls had a genomic index included in the best 2% of the 
Italian Holstein population; they will be the future reproducers of the Italian Holstein 
breed. The ANAFIBJ Genetic Center is currently equipped with two instruments for 
individual impact recording: 1) GreenFeed (C‐Lock Inc., Rapid City, SD, USA), and 2) 
The Laser Methane Detector (LMD - Crowcon, Abingdon, UK). 

1.	 The GreenFeed, considered as an “Automated Head-Chamber System (AHCS), is 
an automated feeding station designed to measure daily CH4 and CO2 emissions 
(g/d) from ruminant’s breath (Hristov et al., 2015). No more than 20 animals were 
housed in the GreenFeed box in order to ensure animal welfare and to avoid 
multiple animals at once. Each animal could visit the AHCS every six hours. At 
each visit the feed was unloaded a maximum of six times, for a total of 24 daily 
visits per animal. This set of traits included number of visits (NVG), carbon-dioxide 
daily emission (CO2), methane daily emission (CH4), average airflow (AIR) and 
average time (ATG).

2.	 Laser Methane Detector Mini (LMD). The LMD is a highly responsive, hand-held 
device that is pointed at an animal’s nostrils and, based on infrared absorption 
spectroscopy, measures methane column density along the length of the laser 
beam (ppm*m) (Garnsworthy et al., 2019). This instrument is connected to a 
smartphone or tablet for data storing. During LMD data collection all ventilation 
or cooling systems inside the barn were turned off. LMD default settings were 
maintained with a measurement interval of 0.5 seconds (two values of CH4 per 
seconds were measured). The operator was located in front of the standing 
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animal at a distance of 1.5 meters. Each measurement lasted 330 seconds. 
Each animal was recorded 3 times per day for 10 consecutive days for a total 
of 28 measurements per animal. The data generated make a list of CH4 values 
accompanied by a unique date and time stamp and a value for the quality of the 
reflection of the laser beam. A single measurement consisting in a time series of 
CH4 values of a single animal is called “profile”. From each profile the raw mean 
(MEAN) of CH4 and the mean of all peaks (P_MEAN) was calculated (Niero et 
al., 2020).

GreenFeed data were relative to 221 Italian Holstein young bulls between 171 and 
541 days of age. Data have been recorded in the period between May 2018 and April 
2022 and each trial lasts on average 15 days.

LMD Genetic Center phenotypic data available belong to 18 Italian Holstein young bulls 
between 171 and 541 days of age for a total of 483 profiles. Records with intensity 
less than 100 were discarded. Profiles analysis was carried as reported by Sorg et al., 
2018. Data have been recorded in the period between January 2022 and June 2022. 

Animals’ biometric measures were also recorded. This set of traits included measures 
of body growth taken using electronic scales and stadiometers operated by qualified 
personnel as body weight (WEI), Body Condition Score (BCS), hearth girth (HG) and 
height (HT).

All young bulls were genotyped using various SNP chips resulting in 69,127 SNP. 
Genomic data were subsequently edited using the preGSf90 software (Aguilar et al., 
2010), removing SNP with call rate below 0.9 and minor allele frequency below 0.05. 
After editing, 61,591 SNP were available. 

Descriptive statistics and heritability estimates for the studied traits are reported in 
Table 1 and Table 2. Growth traits showed the largest heritability estimates (h2), all 
being above or close to 0.40. While these traits are expected to be highly heritable, 
the estimates appeared larger compared to those found in literature. This could be due 
to the relatively small sample size. Heritability estimates for the emission traits were 
moderate to high, ranging from 0.241 for ATG to 0.480 for CO2.

Heritability estimates showed substantial genetic variation for the studied traits. 
The CO2 and CH4 emissions calculated on daily basis showed high heritability with 
the possibility of selection and therefore possible reduction of GHG emissions. The 
estimated values for the heritability of CH4 and CO2 were higher than those found in 
literature (Lassen and Løvendahl, 2016; Brieder et al., 2019), although this could be 
due to the involvement of growing bulls rather than lactating cows and the limited 
sample size in the current study. 
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These preliminary results suggest that selection indexes could be implemented in order 
to reduce GHG emissions. ANAFIBJ is testing several experimental protocols in the 
Genetic Center; it is turning in a “Living Lab”. Thanks to this experience ANAFIBJ wants 
to contribute further and set up a routine recording system implementing experimental 
protocols to be applied both in experimental and commercial farms to collect a critical 
mass of data useful for Italian Holstein selection. Individual CH4 emissions will be 
collected in 3,000 genotyped Italian Holstein dairy cows distributed homogeneously 
in 100 commercial farms throughout the country. Some of these cows are daughters 
of the young bulls recorded at the Genetic Center. In addition, other phenotypes will 
be collected in order to better define GHG data emissions. 

Furthermore, samples of ruminal fluid, faeces and buccal swabs will be collected. 
Rumen fluid will be collected using the Flora Rumen Scoop (Geishauser et al. 2012), 
a ruminal probe specially designed for cattle. The first 0.5 liter of the rumen fluid will 
be discarded to avoid saliva contamination, and the next 0.5 liter will be retained 
for sampling. After each sampling the probe will be washed with water, disinfected, 
rinsed and dried. This procedure will allow to avoid cross-contamination of rumen fluid 
between animals and to avoid interference of chemical products used for disinfection. 
Ruminal fluid samples will be stored in individual bottles at -80°C. At the same time 
buccal swabs and faeces will be sampled. Buccal swabs will be collected using 
salivary swabs. Faeces will be obtained by rectal grab sampling using disposable 
gloves and will be stored in plastic bags. Ruminal fluid, buccal swabs and faeces will 
be submitted for metagenomic analysis. Relative abundance of OTU (Operational 
Taxonomic Units) will be evaluated. These activities will allow to study in deep the 
knowledge of the microbiome-host and environment-microbiome interaction and to 
evaluate the reliability of faeces as a proxy of rumen sample.

Table 1. Descriptive statistics (posterior means with posterior standard deviation) and 
heritability estimates for the traits analysed.  
 

Trait1 Metric N Mean SD h2 
WEI kg 885 309.3 77.48 0.445  (0.236) 
BCS score 849 3.0 0.33 0.512  (0.201) 
HG cm 715 157.3 14.15 0.441  (0.247) 
HEI cm 714 125.5 7.71 0.393  (0.225) 
NVG count 2817 3.9 1.71 0.360  (0.113) 
CO2 g/d 2817 6198.2 1103.88 0.480  (0.206) 
CH4 g/d 2817 223.6 51.83 0.396  (0.169) 
AIR L/s 2817 29.2 4.02 0.448  (0.088) 
ATG s 2817 329.3 87.49 0.241  (0.105) 

1WEI: body weight; BCS: body condition score; HG: heart girth; HEI: height; NVG: number of visits at 
the GreenFeed; CO2 daily carbon dioxide emissions; CH4: daily methane emissions; AIR: average 
airflow at the visit; ATG: average time at the GreenFeed. 
 
 
 
Table 2. Descriptive statistics for the traits analysed using Laser Methane 
Detector. 
 

Trait1 Metric N Mean SD 
P_MEAN ppm*m 18 53.9 30.62 
MEAN ppm*m 18 30.19 20.65 

1 P_MEAN: arithmetic mean of all peaks; MEAN: arithmetic mean of all values. 

 
 

Conclusion



169

ICAR Technical Series no. 26

Benzoni et al.

This study was supported by “Latteco2 project, sottomisura 10.2 of the PSRN 
Biodiversity 2020–2023” (MIPAAF. D.M. no. 465907 del 24/09/2021, project unique 
code 12C21004080005).

Aguilar I., Misztal I., Johnson D.L., Legarra A., Tsuruta S., et al. (2010). J. 
Dairy Sci. 93:2 743–752. https://doi.org/10.3168/jds.2009-2730.

Appuhamy J.A.D.R.N., France J. and Kebreab E. (2016). Glob. Chang. 
Biol. 22:9 3039–3056. https://doi.org/10.1111/gcb.13339.

Breider I.S., Wall E., and Garnsworthy P.C. (2019). J. Dairy Sci. 102:8 
7277–7281. https://doi.org/10.3168/jds.2018-15909.

Callegaro S., Niero G., Penasa M., Finocchiaro R., Invernizzi G., 
Cassandro M. (2022). Italian J. Anim Sci. 21:1, 870-877, https://doi.org/10.1080/18
28051X.2022.2071178.

Calus M.P.L. and Veerkamp R.F. (2011). Genet. Sel. Evol. 43:26. https://
doi.org/10.1186/1297-9686-43-26

Cassandro M., Mele M., Stefanon B. (2013). Ital J. Anim Sci. 12:450–458. 
https://doi.org/10.4081/ijas.2013.e73.

de Haas Y., Pszczola M., Soyeurt H., Wall E., and Lassen J. (2017). J. Dairy 
Sci. 100:2 855–870. https://doi.org/10.3168/jds.2016-11246.

Garnsworthy, P.C., Difford, G.F., Bell, M.J., Bayat, A.R., Huhtanen, P., 
Kuhla, B., Lassen, J., Peiren, N., Pszczola, M., Sorg, D. (2019) Animals 9, 837. 
https://doi.org/10.3390/ani9100837

Geishauser,T., N. Linhart, A. Neidl, and A. Reimann (2012): J. Dairy Sci. 
95, 4556-4567. https://doi.org/10.3168/jds.2012-5380.

Gerber P.J., Hristov, A.N., Henderson B., Makkar H., Oh J., et al. (2013). 
Animal 7:2 220–234. https://doi.org/10.1017/S1751731113000876.

Haque M.N. (2018). J. Anim. Sci. Tech. 60:15. https://doi.org/10.1186/
s40781-018-0175-7

Hristov A.N., Oh J., Giallongo F., Frederick T., Weeks, H., et al. (2015). 
JoVE J. Vis. Exp. 103, 52904. https://doi.org/10.3791/52904.

Lassen J. and Løvendahl P. (2016). J. Dairy Sci. 99:3 1959–1967. https://
doi.org/10.3168/jds.2015-10012.

Misztal I., Tsuruta S., Strabel T., Auvray B., Druet T., et al. (2002). Proc. of 
the 7th WCGALP. Montpellier, France.

Niero, G.; Cendron, F.; Penasa, M.; De Marchi, M.; Cozzi, G.; Cassandro, 
M. (2020). Animals. 10, 606. https://doi.org/10.3390/ani10040606.

Nieuwhof G.J., van Arendonk J.A.M., Vos H., Korver S. (1992). Livestock 
Production Science 32:189-202. https://doi.org/10.1016/S0301-6226(12)80001-7.

Pickering N.K., Chagunda M.G.G, Banos G., Mrode R., McEwan J.C. et 
al. (2015). J. Anim. Sci. 93:1 11–20. https://doi.org/10.2527/jas.2014-8302.

Acknowledgement

References



170

Animal breeding sustainability: the Italian Holstein experience

Proceedings ICAR Conference 2022 Montreal

Sorg D., Difford G.F., Muhlbach S., Kuhla B., Swalve H. H., Lassen J., 
Strabel T., Pszczola M. Computers and Electronics in Agriculture. https://doi.
org/10.1016/j.compag.2018.08.024.



171

ICAR Technical Series no. 26

Mid-Infrared Analyzers: Herd management milk fatty acid 
calibration and validation of multiple instruments

D.M. Barbano, C. Coon and  M. Portnoy 

Northeast Dairy Foods Research Center, Department of Food Science, Cornell 
University, Ithaca, NY, USA 

Corresponding Author: Barbano1@aol.com

Mid-infrared (MIR) analyzers require calibration with samples that have known reference 
chemistry values. Traditional milk calibration samples are individual farm, or cow milks, 
with reference chemistry for each sample. A more advanced procedure for making 
an orthogonal design (fat, protein, lactose, urea) sample calibration set (14 samples) 
with all-lab mean (n=8 to 10) reference chemistry was published and updated in 2020. 
Recently, this same sample set has been used for milk fatty acid calibration. The fatty 
acid reference chemistry is from gas chromatography run on the extracted fat from the 
ether extraction used for the fat payment test. Reference values for major individual 
fatty acids and those used for the most useful dairy herd management decision making 
(i.e., de novo, mixed origin, preformed fatty acids, and double bonds per fatty acid) 
are produced for this orthogonal design sample set. Reference chemistry for groups 
of milk fatty acids utilizes the values for only the major fatty acids (C4, 6, 8, 10, 12, 
14, 16:0, C16:1, C18:0, C18:1, C18:2, C18:3) normalized to 100% and expressed as 
g/100 g of milk. Using only the major fatty acids will achieve better between laboratory 
agreement and consistency for GLC fatty acid methods. Glycerol is approximately 
5.5% of the weight of milk fat. A useful quality control metric for MIR data is the sum 
of the de novo, mixed origin, and preformed fatty acids (g/100 g milk) divided by the 
fat test, and should be between 93 and 96% of the fat test in g/100 g milk. If outside 
this range, there is a problem with ether the MIR fat test or one or more of the MIR 
values for fatty acid groups.  Nine MIR milk analyzers located in different regions of the 
US were calibrated with samples described above and then validated with a group of 
8 individual farm milks from collected from different regions of the US by comparison 
to GLC reference chemistry on the same milks.  The best agreement (g/100 g milk) 
for the mean of all instruments with reference chemistry was for de novo (MD -0.016 
and SDD 0.028) and double bonds per fatty acid (MD 0.00 and SDD 0.01).  Mixed 
and preformed had MD of 0.08 and -0.054 and SDD of 0.053 and 0.048, respectively. 
Mixed and preformed fatty acid models are more sensitive to variation in homogenizer 
performance than de novo. 

The development of PLS models for mid-infrared (MIR) milk analysis of dairy herd 
management parameters was initiated in 2011 in a collaborative program among 
researchers from Cornell University (Ithaca, NY), the laboratory of St Albans Cooperative 
(St Albans, Vermont), and Delta Instruments, Drachten, The Netherlands. The new 
herd management milk analysis parameters de novo, mixed origin, and preformed 
fatty acid (FA) models, fatty chain length, double bonds per fatty acid (i.e., milk fat 
depression index), milk estimated blood NEFA were initiated and were first applied in 
2012 for routine testing of producer bulk tank milks from the St Albans Cooperative 
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(about 400 farms).  Application of these same herd management models (plus models 
to measure milk urea, milk BHB, and milk acetone for individual cow milk testing was 
initiated in 2014 in a collaboration between Cornell researchers and researchers at 
the W. H. Miner Institute, Chazy, NY.  Our first work on bulk tank milks from farms at 
the St Albans Cooperative found a positive relationship between higher de novo and 
de novo + mixed origin fatty acids with bulk tank fat and protein tests. The relationship 
between de novo , mixed origin, and preformed milk fatty acids with fat and protein test 
and fat and protein production per cow per day was the focus of joint field research 
study by Cornell University and W. H. Miner Institute. 

The results of the field studies of the herd management milk analysis models were 
published in two research papers (Woolpert et al., 2016 and Woolpert et al., 2017). 
Woolpert et al., 2016 and 2017 identified management practices, such as higher stall 
stocking density and lower feeding frequency, which were related to lower de novo 
FA content in bulk tank milk. Farms with lower de novo FA, on average, produced less 
milk fat and protein per cow per day. In addition, higher dietary EE was related to lower 
de novo FA content of milk. High de novo farms also had higher milk yield and fat and 
true protein content and yield. Management (i.e., frequent feed delivery and increased 
feed bunk space per cow) and dietary (i.e., adequate physically effective fiber and 
lower ether extract) factors that differed between high de novo and low de novo farms 
have been shown in earlier studies to affect ruminal function. At a constant level of 
milk production, the gross income per unit of milk produced was higher on the high de 
novo farms because of higher milk fat and true protein concentrations. Therefore, the 
de novo FA concentration of bulk tank milk may be an important tool for monitoring 
ruminal function on commercial dairy farms.

Our strategy for development of herd management milk analysis PLS models was to 
develop milk analysis metrics that could be used more strategically and tactically to 
identify the causes of increases and decreases in milk fat and protein production per 
cow per day. With respect to herd management milk testing for diagnostic determination 
of why milk fat has increased or decreased, the strategy was to develop milk analysis 
models that provide information on milk fat production by two different milk fatty acid 
sources: 

1.	 De novo synthesis of fatty acid in the mammary cells and 

2.	 Transfer of performed fatty acid from the blood stream into mammary secretory 
cells.  

The development and modeling performance metrics (i.e., RSD values) of the PLS 
models for measurement of milk de novo, mixed origin, preformed, and total milk 
fatty acids were described by Woolpert et al. (2016). The development and modeling 
performance metrics for the fatty chain length (mean carbon number) and the milk 
double bonds per fatty acid models (i.e., milk fat depression index) were described 
by Wojciechowski and Barbano (2016). The development and modeling performance 
metrics for the milk estimated blood NEFA model were described by Bach et al. (2021). 

Dairy herd 
management milk 
analysis model 
development
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Like all other MIR milk analysis metrics (e.g., fat, protein, solids, urea, etc.), all 
milk fatty prediction models need to calibrated with reference samples with known 
reference values. The reference values for milk fatty acids are determined by gas liquid 
chromatography (GLC). The sample extraction, methylation and GLC method used 
in our studies was described by  Wojciechowski and Barbano (2016). Briefly milk fat 
was extracted from each sample by an ether extraction milk that is the reference for 
milk fat payment (AOACI, 2021, method 989.05), the formation of methyl esters was 
catalyzed by methanolic KOH and boron triflouide, and methyl esters of fatty acids were 
determined GLC as described by Wojciechowski and Barbano (2016). The calculation 
of milk fatty acids, fatty acid chain length and double bonds per fatty acid was described 
by Kaylegian et al. (2009).  The steps of accounting for recovery of short chain fatty 
acids, normalization of fatty acids to 100% and removal of the impact the added methyl 
group on the relative proportion on each fatty acid chain length are important steps 
described by Kaylegian et al. (2009). These methods and the approach of measuring 
fatty acid groups (de novo, mixed origin, and performed) are applied to an orthogonal 
design set of MIR calibration milks (Kaylegian et al. 2006) that was modified to include 
milk urea by Portnoy et al. (2021). The reference values for each of the 14 milks in the 
calibration set for de novo, mixed origin, and preformed fatty acids are expressed as 
grams of fatty acid per 100 g milk, as shown in Figure 1. 

Three hundred and forty sets of the calibration samples shown in Figure 1 are produced 
once every 4 weeks and distributed laboratories for calibration of components and 
milk fatty acids.

Materials and 
methods

Calibration of MIR 
milk fatty acid models

Figure 1. Milk calibration samples and reference chemistry (components and fatty acids).
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Four times per year, a set of 8 unknown individual farm milk are sent to all laboratories 
for performance evaluation. The farms selected for this testing are 2 farms from each 
of 4 regions of the US. These 8 farm milks are sent to one laboratory and they split and 
shipped to all laboratories for testing by MIR milk analysis and for reference testing. 
Tables 1 through 5 below contain an example of the results from multi-laboratory testing 
of the same milks. The results in the Tables below are from a group of instruments 
that are a mixture of Delta FTA and Delta Combi milk analyzers. Recently, additional 
instruments by Bentley and Foss have been using our calibration samples and in 
general their performance on the milk fatty acids is similar to what we have observed 
for the Delta instruments. 

On average for this set of unknown farm milks, most MIR laboratories produced a mean 
estimate of the de novo fatty acids was lower than the reference chemistry. However, 
on an absolute basis all labs had a mean difference that was < 2.93% relative of the 
reference chemistry mean for the sample set. 

On average for this set of unknown farm milks, most MIR laboratories produced a 
mean estimate of mixed origin fatty acids that was higher than the reference chemistry. 
However, on an absolute basis all labs had a mean difference that was < 8.9% relative 
of the reference chemistry mean for the sample set. 

On average for this set of unknown farm milks, most MIR laboratories produced a 
mean estimate of performed fatty acids that was lower than the reference chemistry. 
However, on an absolute basis all labs had a mean difference that was < 7.0% relative 
of the reference chemistry mean for the sample set. 

Between laboratory 
agreement: milk 
fatty acid validation 
testing

Table 1. Between laboratory comparison of de novo fatty acid analysis (g/100 of milk) and calculated mean 
difference (MD) and standard deviation of the differences from reference chemistry for the 8 samples. 

 

Results and 
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Table 2. Between laboratory comparison of mixed origin fatty acid analysis (g/100 of milk) and calculated mean 
difference (MD) and standard deviation of the differences from reference chemistry for the 8 samples. 

Table 3. Between laboratory comparison of preformed fatty acid analysis (g/100 of milk) and calculated mean 
difference (MD) and standard deviation of the differences from reference chemistry for the 8 samples. 
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We have observed that the mixed and preformed milk fatty acids tend to deviate in 
opposite direction relative reference chemistry values. The mixed origin and preformed 
fatty acid models are more sensitive to variation in homogenizer performance than de 
novo fatty predictions or prediction of the main milk components.

On average for this set of unknown farm milks, most MIR laboratories produced a 
mean estimate of fatty acid chain length that was lower than the reference chemistry. 
However, on an absolute basis all labs had a mean difference that was < 0.92% relative 
of the reference chemistry mean for the sample set. 

On average for this set of unknown farm milks, most MIR laboratories produced a 
mean estimate of mean fatty acid unsaturation that was very close to the reference 
chemistry. On an absolute basis all labs had a mean difference that was < 4.4% relative 
of the reference chemistry mean for the sample set. The between lab agreement on 
this parameter

•	 Bulk tank producer milks: The sum of de novo, mixed, and preformed fatty acids 
(g/100 g milk) should be about 94.5% of the fat test (g/100 g milk). This will vary 
from farm-to-farm, but all values should be between 93 and 96%. If sum of de 
novo, mixed and preformed as a % of fat test increases or decreases with change 
in fat concentration for a population of farms, the error is in the slope setting for the 
prediction of total fat, not the fatty acid testing. 

•	 If all tests are lower than 93 or higher than 96% then it could be bias error in fat test, 
or the wrong reference chemistry has been used to adjust the slope and intercept 
on one of the 3 fatty acid measures.

 Table 4.. Between laboratory comparison of fatty acid chain length analysis (carbons per fatty acid) and calculated 
mean difference (MD) and standard deviation of the differences from reference chemistry for the 8 samples. 

Recognizing when 
there is laboratory 
problem with MIR 
fatty acid data

 



177

ICAR Technical Series no. 26

Barbano et al.

•	 Individual cow milks: The sum of de novo, mixed, and preformed fatty acids 
should be about 94.5% of the fat test. This will vary from cow-to-cow. The errors 
discussed on the previous slide for bulk tank milk can have the same impact on 
individual cow milk tests. 

•	 The PLS fatty acid herd management models were developed for bulk tank milks 
and for milks from individual cows in positive energy balance. Thus, these fatty acid 
models will not work well on milks from cows at less than 5 days in lactation. Very 
early lactation milks will give values for the sum of the fatty acid (g/100 g milk) that 
exceeds the fat test in g/100 g milk. These samples are outside the scope of the 
ability of the current models. 

•	 Herd management application of milk fatty data. This is a discussion that is 
beyond the scope of this presentation, but we have presented data from field 
studies and provided examples of how to interpret the fatty acid data from bulk 
tank milks. Those examples are provided in a series of papers presented at the 
annual Cornell Dairy Conference (Barbano et al 2014,2017, 2018, 2019 ; Barbano 
and Mellili 2016). 

Milk fatty acid analysis is a useful tool for dairy herd management. Most dairy herd 
management milk fatty acid analysis in the USA has been applied to bulk tank and 
tanker load samples from individual farms in milk payment testing laboratories. Today 
bulk tank milk is tested on virtually every pick up and for large farms every tanker 
load of milk is tested daily. Results from this testing are usually posted within 36 h of 
sample collection. This has provided a valuable resource for nutrition management 
on dairy farms in the USA and dairy nutritionists have rapidly improved their skills for 
interpretation of the data. Monitoring milk fatty acid composition across time on the 
same farm (g/100 g milk) has proved very useful in management of dairy rations. 

Table 5. Between laboratory comparison of mean fatty acid unsaturation (double bonds per fatty acid) and calculated 
mean difference (MD) and standard deviation of the differences from reference chemistry for the 8 samples.

Conclusion
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Individual cow milk testing is still a challenge. In general, the frequency of milk sampling 
and testing of milks from individual cows is too low to provide useful information for 
farm management. The interpretation of the data is more complex because there are 
normal and systematic changes in milk fatty acid composition with stage of lactation 
and these factors need to be considered when interpreting milk fatty acid data from 
individual cows. In the long- term future, the dairy industry needs to strive to achieve 
milk testing hardware innovations that allow individual cow milk analysis to occur in 
real-time on the farm during milking. If that is achieved, monitoring and management 
of individual cow health will advance rapidly.

Bach, K. D., D. M. Barbano, and J. A. A. McArt. 2021. The relationship of 
excessive energy deficit with milk somatic cell score and clinical mastitis. J. Dairy 
Sci. J. Dairy Sci. 104:715–727.

Barbano, D. M., C. Melilli, and T. Overton. 2014. Advanced use of 
FTIR spectra of milk for feeding and health management. Pages 105 – 113 in 
Proceedings of the Cornell Dairy Nutrition Conference. Department of Animal 
Science, Cornell University, Ithaca, NY. 

Barbano, D. M. and C. Melilli. 2016. New Milk Analysis Technologies to 
Improve Dairy Cattle Performance. Pages 61 to 73 in Proceedings of the Cornell 
Dairy Nutrition Conference, Department of Animal Science, Cornell University, 
Ithaca, NY. 

Barbano, D. M., C. Melilli, H. Dann, and R. J. Grant. 2017. Infrared Milk 
Fatty Acid Analysis: Experience in the Field for Farm Management. Page 159 
to 174 in the 2017 Proceedings of the Cornell Nutrition Conference for Feed 
Manufacturers. October 17 to 19, 2017. Syracuse, NY. 

Barbano, D. M. H. M. Dann, C. Melilli, and R. J. Grant. 2018. Milk analysis 
for dairy herd management: today and in the future. Page 102 to 115 in the 2018 
Proceedings of the Cornell Nutrition Conference for Feed Manufacturers. October 
16 to 18, 2018. Syracuse, NY.

Barbano, D.M., H. Dann, A. Pape, C. Melilli, and R. Grant. 2019. Herd 
Management Milk Analysis: Jersey versus Holstein and Between Lab Agreement 
of Results. Page 101 to 117 in the 2019 Proceedings of the Cornell Nutrition 
Conference for Feed Manufacturers. October 22 to 24, 2019. Syracuse, NY.

Dann, H. M., D. M. Barbano, A. Pape, and R. J. Grant. 2018. Mid-infrared 
milk testing for evaluation of health status in dairy cows. Page 106 to 128 in the 
2018 Proceedings of the Cornell Nutrition Conference for Feed Manufacturers. 
October 16 to 18, 2018. Syracuse, NY.

Kaylegian, K. E., G. E. Houghton, J. M. Lynch, J. R. Fleming, and D. 
M. Barbano. 2006. Calibration of Infrared Milk Analyzers: Modified Milk Versus 
Producer Milk. J. Dairy Sci. 89:2817–2832.

Kaylegian, K. E., D. A. Dwyer, J. M. Lynch, D. E. Bauman, J. R. Fleming, 
and D. M. Barbano. 2009. Impact of fatty acid composition on the accuracy of 
mid‑infrared fat analysis of farm milks. J. Dairy Sci. 92:2502–2513.

 Portnoy, M. C. Coon, and D. M. Barbano. 2021. Infrared milk analyzers: 
Milk urea nitrogen calibration. J. Dairy Sci. 04:7426–7437. 

References



179

ICAR Technical Series no. 26

Barbano et al.

Wojciechowski, K. L, and D. M. Barbano. 2016. Prediction of fatty acid 
chain length and unsaturation of milk fat by mid-infrared milk analysis.  J. Dairy Sci. 
99:8561-8570.

Woolpert, M. E., H. M. Dann, K. W. Cotanch, C. Melilli, L. E. Chase, 
R. J. Grant, and D. M. Barbano. 2016. Management, nutrition, and lactation 
performance are related to bulk tank milk de novo fatty acid concentration on 
northeastern US dairy farms. J. Dairy Sci. 99:8486-8497.

Woolpert, M.E., H. M. Dann, K. W. Cotanch, C. Melilli, L. E. Chase, 
R. J. Grant, and D. M. Barbano. 2017. Management practices, physically effective 
fiber, and ether extract are related to bulk tank milk de novo fatty acid concentration 
on Holstein dairy farms. J. Dairy Sci. 100:5097–5106.



180



181

ICAR Technical Series no. 26

The role of recording and evaluating calf traits for 
improved sustainability

M.M. Axford1,2,3*, M. Khansefid1, A.J. and J.E. Pryce1,2

1Agriculture Victoria, AgriBio, Bundoora, Victoria 3083, Australia
2School of Applied Systems Biology, La Trobe University, 

Bundoora, Victoria 3083, Australia 
3DataGene Ltd, 5 Ring Road, Bundoora, Victoria 3083, Australia

Corresponding Author: maxford@datagene.com.au 

In a grazing system, about one-quarter of the costs associated with rearing dairy heifers 
are incurred between birth and weaning. In addition, the risk of mortality is considerably 
higher during this period which influences farm profitability as well as consumer attitudes 
towards the dairying industry. Genetic tools, such as estimated breeding values, can 
contribute towards improved outcomes for calves and easier calving routines for 
farmers. Stillbirth and heifer livability are two examples of calf traits. Acknowledging 
the astute ability of calf rearers to differentiate between calves that are easy or difficult 
to rear, a farmer-scored trait of calf vitality is under investigation. This study describes 
variation in calf vitality scores amongst a group of Australian Holstein herds. . 

Keywords: calf vitality, calf health, dairy cattle breeding.

In the Australian dairy context, sustainability is described as enhancing farmer 
livelihoods, improving the wellbeing of people, providing best care for all our animals 
and reducing environmental impact (Dairy Australia, 2020). Heifers often comprise 
around one-third of the total herd and are costly to rear. In a recent analysis, the cost 
of heifer rearing was estimated to be between AU$1190 (75% grazing) and AU$1718 
(zero grazing) per heifer, of which $315 is incurred between birth to weaning in both 
systems (Shannon et al. 2022). Reducing stillbirth, calf morbidity and mortality can 
improve profitability by spreading costs over a larger number of healthy animals to be 
sold or retained as herd replacements. At the same time, farmers have an obligation 
to provide the best care for calves. 

There is strong evidence that breeding values are useful genetic tools to improve the 
production and longevity of dairy cows (Veerkamp and van Pelt 2020) and thereby 
contribute to improved sustainability. In a specific calf example, the genetic trend for 
calving ease in Holstein bulls demonstrates a 1% increase in normal or easier calvings 
for every 5 years since 2000 in Australia. Easier calving is beneficial to both cows and 
their calves (Eaglen et al. 2011; Eaglen et al. 2013; Murray and Leslie 2013). A further 
example is found in the heritability of the calf survival trait that is estimated to be 5% 
for survival to 10 months in the UK (Winters 2019), 0.72% for survival to 18 months in 
the USA (Neupane et al. 2021), 0.60% for survival to 365 days in the USA (Gonzalez-
Peña et al. 2019) and 4.2% for survival to first calving in Denmark (Fuerst-Waltl and 
Sørensen 2010) in Holsteins. Finally, stillbirth heritability estimates are also varied but 
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are generally higher (1-12%) as summarised by Cole et al. (2007). It seems clear that 
breeding for calf traits can also contribute to sustainability.

In the analysis of stillbirth, calf survival and calf health traits, there is often insufficient 
data for a robust analysis, especially in countries where data recording is not enforced 
through legislation or strict quality schemes. So, the question becomes what calf trait 
recording initiatives could be implemented to increase the quality and quantity of calf 
health data that improves the genetic evaluation of calf traits and ultimately lifts calf 
performance?

A research project is underway to better understand the genetic variation in stillbirth, 
calf morbidity and mortality in Australian dairy calves. The project has already recruited 
more than fifty herds, of which six herds formed an early pilot group to test data collection 
processes. Several farmers in the early pilot group requested the opportunity to record 
something more than stillbirth, morbidity and mortality. They wanted to record calves 
that were exceptionally easy to rear in contrast to calves that were dull, sluggish and 
difficult to teach to drink. Using Australian colloquial language, calf rearers describe 
them as calves that were ‘Rippers’ or ‘Duds’. As a result, the data collection was 
broadened to include a subjective calf vitality score.

Subjective trait measures are successfully used in the genetic evaluation systems of 
various countries. An example is the farmer scoring of milking speed, temperament and 
likeability in Australian dairy cattle with heritability estimates of 0.18-0.26 in Holstein 
and 0.25-0.29 in Jerseys (Beard and Jones 1991; Beard 1993; Visscher and Goddard 
1995). Beard and Jones  (1991) reported that Likeability, as a ‘catch all’ trait is a useful 
trait in models that predict early survival in animals without complete phenotypes.  
Despite the subjectivity of their scoring, these workability traits are influential in current 
breeding indexes (Byrne et al. 2016).

Given there is already familiarity with workability traits, we used a similar scoring scale 
as the base for a new Calf Vitality Score and modified to include aspects of behavioural 
scoring in beef cattle (Parham et al. 2019; Ceballos et al. 2021) and health scoring in 
humans (Streiner 2015). Key features of a successful scoring system will likely have 
the following characteristics:

•	 Clear terminology that is easily understood by observers.

•	 Simple definitions that can be memorized.

•	 Categories that are sufficiently different from each other.

•	 3-5 categories.

The four-category calf vitality score is described in figure 1 where A-Ripper/Great, 
B-Good, C-Dull/Sick/Dud, D-Dead. The visual representation of the score is presented to 
support the needs of people with a range of learning styles. The consensus of the pilot 
group was that the calves should be scored for calf vitality within the first month of life.

Introducing Calf 
Vitality Score
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Six commercial dairy herds located in South-Eastern Australia were recruited in 
Spring 2020 as pilot participants, of which three recorded calf vitality scores. Farmers 
were asked to record calf identity, pedigree, calving dates, calf fate (stillbirth), calving 
ease, calf size, health and treatment events to weaning, deaths, deformed calves and 
calf vitality score. All stillborn calves were recorded, regardless of breed or gender. 
Health and vitality records were collected for dairy heifers and bulls kept for rearing. It 
is important to note that the calf vitality score was co-developed, with farmers, during 
the collection period. 

Participation in the project was voluntary. Participants were invited to participate if they 
were passionate about calf health, willing to: 

1.	 collect the required data;

2.	 provide feedback and information to the project, had calves that are predominantly 
sired by an AI sire and used Holstein, Jersey or Red Breed sires.

Data was supplied in a wide variety of paper-based and electronic formats but compiled 
into a Microsoft Access database (Microsoft) and then analysed in R Studio (RStudio 
Team 2021). Health and treatment events were included in this analysis so that a health 
event could be a diagnosis (such as scours) and/or treatment for an illness (such as 
treatment for scours), as recorded by the farmer.  Herds were predominantly Holstein 
and were located within 15 km of each other meaning that calves were likely to be 
exposed to similar weather conditions, although management practices are expected 
to vary. Subsequently, we calculated summary statistics such as means and standard 
deviations for each herd and repeated for the overall group..

There were 228, 127 and 171 recorded calves in each of 3 herds with calf vitality scores 
totalling 506 calves born between July and October 2020. As shown in Table 1, the 
mean mortality for each herd was 11, 35 and 2% including stillbirths. Stillbirths were 
8, 31 and 2% respectively. 

The most recorded health events were scours (37% of calves) and pneumonia (1% 
of calves). Calf vitality scores were recorded for 452 calves with means and ranges of 
Score A 32% (15-77), Score B 56% (0-73), Score C 8% (0-24) and Score D 3% (0-4). 
No animals with a Score A had a recorded health event. The prevalence of health 
events increased with subsequent scores as shown in Figure 2. Fifty-seven percent 
of calves with a Score B had at least one health event and this increased to 67% and 
87% for Scores C and D. 

Figure 1. Calf Vitality Score. 
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Farmers in the pilot group were co-developing the calf vitality scoring system during 
the first season of collection. The scale, descriptions, timing of scoring and recording 
spreadsheets were developed as the scoring was taking place. This is the likely reason 
for different scoring patterns between herds, as indicated by the range in mean scores. 
However, early indications suggest that the scoring system made sense as there were 

Figure 2. Mean proportions of calf vitality scores and recording of illness in 3 pilot herds.

 

Discussion 

Table 1. Mortality, stillbirth and calf vitality scores in 3 pilot herds. 
 

 Herd A Herd B Herd C Overall 
Mortality     

Observations 228 127 151 506 
Mean (±SD) 0.114 0.354 0.020 0.146 ± 0.354 

Stillbirth     
Observations 228 127 151 506 
Mean (±SD) 0.079 0.307 0.020 0.119 ± 0.324 

Vitality     
Observations 203 98 151 452 

Score A 0.241 0.765 0.146 0.323 
Score B 0.714 0 0.728 0.564 
Score C 0 0.235 0.086 0.080 
Score D 0.044 0 0.040 0.033 
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zero calves with Score A that also had a recorded health event. They were accurately 
recorded as ‘Rippers’. In contrast, 87% of calves with Score D had a recorded health 
event. 

While this is an early indicator that the scoring system could be useful, it also suggests 
that the variation in vitality scores could be so strongly linked to health events that 
recording health events alone could be of close to equal value. Herd recording 
systems are already in place for recording health events in dairy heifers. Relying on 
health event recording would avoid further software development tasks that would 
be required to systematically collect calf vitality scores nationwide. However, current 
recording systems typically exclude records for beef cross heifers and bulls. From a 
sustainability perspective, adequately managing and monitoring the health and welfare 
of these calves are equally as important as dairy replacements. 

Following this pilot, the calf vitality score descriptions, images, recording sheets and 
timing of scoring were refined for use in subsequent calvings and in a much larger group 
of herds. For example, farmers reported that the best time to score was after the first 
week of life but it needed to be done before 4 weeks when differences became less 
obvious. Secondly, images were drawn and refined to provide a visual representation 
of each score. Further analysis of the larger collections that followed in 2021 and 2022 
are expected to provide further insight to the value of calf vitality scoring.

Results from the pilot herds show that it is possible to score calf vitality as an additional 
piece of information in calf recording routines. Early indications suggest that calf vitality 
scoring is helpful in increasing engagement with farmers that can lead to improved calf 
health data recording. Higher quality and quantity of calf health records, for complete 
cohorts, will be useful to improve the benchmarking of sustainability metrics like mortality 
and morbidity as well as producing new genetic breeding tools. However, it is too soon 
to assess the value of calf vitality as an independent score. Continued collection of 
calf vitality scores in 2021 and 2022 has provided a larger volume of data which will 
be later analysed to determine the value of vitality scoring in genetic predictions of calf 
health traits, over and above conventional health recording. 

This research has been funded by DairyBio, Agriculture Victoria and DataGene, with 
support from Zoetis. The authors acknowledge the significant effort of participating 
farmers as well as herd recording software organisations, herd recording centres and 
genomic service providers for their contributions.
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Milk recording data have the potential to provide a dynamic picture of the overall herd 
status and management practices. We developed a dairy management tool to assess 
and monitor herd sustainability based on 10 routinely collected DHI indicators linked 
to key aspects of dairy management over the life span of a dairy cow. The indicators 
were selected by a committee of dairy industry experts and are related to longevity 
and culling (% cows in lactation ≥3; involuntary culling; cow mortality), feeding and 
production (% cows with milk urea nitrogen <5 or >18 mg/dL; Transition Cow Index; 
a management score index to evaluate how well the genetic potential of cows to 
produce milk is expressed), heifer management (calf mortality; age at first calving), 
and health (% cows with BHB >0.20 mM at first test; % cows with subclinical mastitis 
as SCC >200,000) at herd level (12-month rolling averages except for early lactation). 
Indicators were aggregated to a composite herd sustainability index (SI) and aimed to 
benchmark the overall herd sustainability of a herd relative to its peers and highlight 
specific areas with opportunities for improvements. The herd SI and benchmarks are 
computed three times per year and made available to dairy producers and advisor 
services via customized reports. Preliminary analyses were conducted with 2,608 
dairy herds across Quebec and New Brunswick, Canada, to validate the herd SI 
with herd performance and profitability (12-month test date averages for 2020), and 
farm management practices collected through an online survey in 2020. Overall, 
with increasing herd SI, the herd performance improved for production (+8.9 kg/cow 
and day; top 10% versus bottom 10% herds for all reported results), herd longevity 
(−36% involuntary culling and −74% cow mortality), heifer management (−62% calf 
mortality), reproduction (−36 days open and −37 days for calving interval), for health 
parameters (−51% potential subclinical mastitis; −71% potential hyperketonemia), and 
herd profitability (+26% milk value and +$93,810 in operation margin). A descriptive 
study of association with farm management practices on 2,143 dairy farms highlighted 
some important aspects of calf, heifer, dry cow, and milking management. In particular, 
improving the stall surface and housing comfort, colostrum management, ventilation, 
and udder and hoof health were key aspects to improve the herd SI. In conclusion, 
milk recording data can be useful to assess and monitor herd sustainability and can 
help dairy producers adopt best management practices to improve the production 
performance and herd profitability. 
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Sustainability is a global concept addressing the balance and long-term viability of a 
system. At the herd level, a sustainable herd would be a herd in an optimal balance 
between productivity, profitability, and longevity of the cows in the herd. This would 
therefore add-up to an overall performing herd with minimal incidence of disease and 
allowing for a good work-life balance of the producers. Using a similar approach by 
integrating different aspects of sustainability, Ryan et al. (2016) showed that the most 
profitable herds were also the ones performing best from an environmental sustainability 
perspective. 

Due to the multidimensional nature of sustainability, a composite index for sustainability 
was created. A proof-of-concept with a comprehensive validation of the robustness 
of the composite index was published elsewhere (Warner et al., 2020). The results 
showed that herds could be evaluated relative to their peers while maintaining the 
ability to intervene on specific areas with opportunities for improvement through the 
individual indicators. 

Our objective was to evaluate the possibility to use routinely collected DHI information 
to calculate herd sustainability, and then compare this ranking to performance and 
profitability rankings.

To select the proper criteria to be included in the index, and with the objective of 
encouraging future adoption of the SI, we conducted a consultation with a committee of 
industry and research experts from various fields including nutrition and management, 
welfare, economics, milk recording. This committee had the precise mandate to come 
up with a list of routinely collected dairy herd improvement (DHI) variables that could be 
used to identify key parameters that contribute to overall herd sustainability. In addition, 
the committee had to ensure that these indicators would cover the full life cycle at the 
farm (birth to culling) without overlapping among chosen criteria.

A total of 10 indicators was chosen and grouped in four categories as detailed below.

1.	 Cows in 3rd lactation and over (%): percentage of cows in the herd that started at 
least a 3rd lactation in the last 12 months before the index is calculated. 

2.	 Involuntary Culling (%): percentage of cows removed from the herd in the last 12 
months for reasons classified as involuntary culling (reproduction, feet and legs, 
udder health, injury, …)

3.	 Cow Mortality Rate (%): percentage of cows removed from the herd for mortality 
during the last 12 months prior to the calculation of the index. 
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1.	 Milk Urea Nitrogen (MUN) <5 or >18 mg N/dL (%): average percentage of cows 
tested individually for MUN that had a result of less than 5 mg of nitrogen per dL 
OR more than 18 mg per dL in the last 12 months prior to the index calculation.

2.	 Management Score for Milk (kg):  The general principle of the Management 
Score is to evaluate if the genetic potential of cows to produce milk in a herd is 
well expressed, isolating the “environment” portion of the popular “Phenotype = 
Genetics + Environment” equation. 

3.	 Transition Cow Index™: Objective assessment of the success of the transition 
period at the herd level, based on Nordlund (2006). 

1.	 Calf Mortality Rate (%): Percentage of calves reported dead within the first 24 
hours after birth over the last 12 months.

2.	 Age at First Calving (months):  Average age at first calving of the animals that 
calved within the 12 months preceding the calculation of the SI.

1.	 Cows with BHB >0.20 mmol/ l milk (%): percentage of cows with a result greater 
than 0.20 millimoles of Beta hydroxybutyrate (BHB) per liter of milk during the 12 
months preceding the calculation of the SI.

2.	 Cows >200,000 cells/ml (%): percentage of cows that had a somatic cell count 
(SCC) greater than 200,000 in the 12 months prior to the calculation of the SI.

A percentile rank (1-99) is assigned for each of the ten parameters for each herd and 
the ten percentile ranks are summed to establish an overall ranking of the herds. This 
overall ranking is then re-expressed as a percentile rank, which is the SI of the herd. 
Herds can therefore compare against peers for their overall SI, but also for each of the 
ten indicators separately to better identify and improve weaknesses. 

In order to have a SI calculated, a single herd must have at least seven out of the 
ten indicators available at milk recording (some are optional). For any missing data, 
a percentile rank of 50 is assigned. The SI is calculated for all Canadian herds three 
times a year (April, August and December). Each reports presents actual results as well 
as historical performance of the herd over the last two years to monitor improvement.

A subset of 2,608 eastern Canadian herds were used to compare performance of 
top herds according to the SI versus the top herds in terms of performance (Table 1). 

Overall, with increasing herd SI, the herd performance improved for production (+8.9 
kg/cow and day; top 10% versus bottom 10% herds for all reported results), herd 
longevity (−36% involuntary culling and −74% cow mortality), heifer management (−62% 
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calf mortality), reproduction (−36 days open and −37 days for calving interval), health 
parameters (−51% potential subclinical mastitis; −71% potential hyperketonemia). 

Simulations were done using a fictional herd with a quota of 100 kg of butterfat/day 
(Canadian supply management system and milk prices), Overall herd profitability was 
increased (+26% milk value and +$93,810 in operation margin) for herds in the top 
10% for SI. 

A descriptive comparison was made to compare performance and demographics of 
the best herds for SI versus the best herds in terms of milk value (milk yield corrected 
for price of milk components; Top 10% for both groups; Table 2). 

Top SI herds had slightly lower corrected milk (-2.9 kg/cow/d) but improved milk quality 
and higher longevity due mainly to reduced culling.  

Finally, a descriptive study of association with farm management practices on 2,143 
dairy farms collected via a questionnaire (Lactanet, 2021) revealed some important 
aspects of calf, heifer, dry cow, and milking management. In particular, improving the 
stall surface and housing comfort, colostrum management, ventilation, and udder and 
hoof health were key aspects to improve the herd SI. 

Table 1. Comparison of demographics and performance of bottom, average and top 
herds for the sustainability Index (SI) based on 2,608 eastern Canadian herds. 
 

 Bottom 10% SI Average SI Top 10% SI 
Production    
  Fat (%) 4.16 4.10 4.09 
  Protein (%) 3.22 3.18 3,18 
  SCC ('000 s.c./ml) 263 193 137 
  Milk (kg/year) 8,414 9,844 11,023 
  Corrected Milk (kg/day) 31.4 36 40.3 
Demographics    
  3rd lactation or + (%) 37 42 46 
  Culled Cows (%) 39 34 32 
  Involuntary Culling (%) 23 19 15 
  Age at First Calving (months) 27.1 25.2 23.9 
Reproduction    
  Calving Interval (days) 432 409 395 
  Days Open 152 129 116 

 

Table 2. Comparison of demographics and performance of the best 10% herds 
for sustainability index and milk value (CAN$/cow and day).  
 

 Sustainability index Milk value 
Production   
  Fat (%) 4.09 4.03 
  Protein (%) 3.18 3.15 
  SCC ('000 s.c./ml) 137 170 
  Milk (kg/year) 11023 11990 
  Corrected Milk (kg/day) 40.3 43.2 
Demographics   
  3rd lactation or + (%) 46 41 
  Culled Cows (%) 32 38 
  Involuntary Culling (%) 15 21 
  Age at First Calving (months) 23.9 24.2 
Reproduction   
  Calving Interval (days) 395 401 
  Days Open 116 121 
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Customized reports are published three times per year and made available to dairy 
producers and advisor services, including historical records to monitor changes over 
the last two years (an example as well as additional information on the SI can be found 
on online: https://lactanet.ca/en/thematique/farm-sustainability/). 

In conclusion, milk recording data routinely collected and available in DHI databases 
was used to develop a herd sustainability index and compare herds across Canada. 
The SI can be useful to assess and monitor herd sustainability and can help dairy 
producers adopt best management practices to improve overall production performance 
and herd profitability. 

Authors wish to thank the committee members who participated in the development 
of this index, as well as Lactanet colleagues and producers who provided feedback 
throughout development. 
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RUMIGEN is a project financially supported by the EU that aims to develop breeding 
programs capable of managing the trade-offs between efficient production and resilience 
to extreme climate conditions. RUMIGEN is designed under a multi-disciplinary 
approach that mixes competencies in both genetics and social sciences. The genetic 
approach aims to enhance genomic selection using three levers: quantitative genetics, 
genome editing, and epigenetics.

One of the objectives of RUMIGEN is to enlarge selection criteria and to provide 
genomic tools to select dairy cows tolerant to heat stress. Studies are dedicated to the 
definition of heat-tolerance traits based on production, reproduction and health records, 
as well as to the study of the trade-offs between these traits, and with those already 
selected. These analyses are based on performances recorded in commercial herds in 
France, Spain and the Netherlands (i.e., milk production traits and somatic cell scores 
recorded by Milk Recording Organizations, and fertility traits derived from AI events), 
in combination with meteorological data obtained from the corresponding Meteorology 
Agencies. Records are associated to meteorological information at the farm level, in 
order to measure the impact of heat stress. First results obtained for different breeds 
and in a large range of farming and climatic scenarios showed that the combination 
of both types of information is relevant to measure the decline of performances due to 
heat stress and to define heat stress indicators and new traits for future breeding tools.

Keywords: Dairy cattle, animal breeding, heat tolerance, climate change, new 
phenotypes.
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Social expectations are more and more pushing for the development of sustainable 
breeding programs and linked technologies, as well as of breeding for adaptation to 
climate change while taking into account genetic diversity. The RUMIGEN program 
(https://rumigen.eu/), financially supported by the EU, aims to produce robust and 
efficient cattle able to manage the trade-offs between production and adaptation to 
extreme climate conditions.

To reach this goal, RUMIGEN gathers a large panel of competences. Research in 
quantitative genetics are focused on the study of heat tolerance traits and of the 
impact of climate change on the trade-offs between traits. The partners also study new 
approaches to maintain genetic diversity using genome information and the potential 
use of epigenomics information to enhance genomic predictions. Another ambition of 
this program is to improve the understanding on how genetic and epigenetic processes 
shape the phenotypes. Several experiments will be conducted to determine the impact 
of environmental stressors (metabolic demands during the gestation, heat, immunity 
challenge and pathogens). Epigenotyping tools will be used on a large scale to study 
the variability of the epigenomic profiles, their transmission between generations, and 
their impact on phenotypes. Regarding new biotechnologies, genome editing has 
been also suggested as a promising tool to speed up selection and design disease 
resistance alleles. However, it raises technical and social issues since only few data 
are available regarding the genome integrity (off-targeting, rates of de novo mutation). 
This is why RUMIGEN aims to assess the potential of genome editing to speed up 
introgression and the security of genome editing in different conditions. Finally, animal 
breeding brings not only biological, technical and economical issues, but also societal 
concerns with respect to breeding objectives, biodiversity and the potential use of new 
breeding technologies. Therefore, a work-package of RUMIGEN is dedicated to the 
social acceptance of breeding and the related technologies.

One of the main objectives of RUMIGEN is to provide is to provide breeding tools 
to face selection under the harsh environmental conditidions generated by climate 
change. For this purpose, France (Idele, INRAE), Spain (INIA—CSIC, IRIAF) and the 
Netherlands (Wageningen University and Research) collaborate to define new traits 
related to heat tolerance. Large-scale data from commercial farms are combined with 
meteorological information in order to highlight mid-long term impact of heat stress on 
performances and to define new traits related to heat tolerance.

The objective of this paper is to present the first results of using performances of 
Spanish, French and Dutch dairy cows recorded by Milk Recording Organizations 
(MROs) and associated meteorological data to measure the impact of heat stress 
period on production and health traits.

Test-day (TD) records for milk yield (MY, kg/d), fat yield (FY, g/d), protein yield (PY, g/d), 
fat content (FC, %), and protein content (PC, %) for French, Spanish, and Dutch cows, 
were extracted from the respective genetic evaluations for production and health traits. 
In addition to these traits, TD records for somatic cell score (SCS; defined as SCS = 3 
+ log_2 (SCC/100,000), with SCC being somatic cell counts in cells/ml) were available 
for French and Dutch cows.

Three breeds were involved in the analyses: the Holstein population, studied in the 
three countries, and two regional breeds, that is Montbéliarde studied in France, and 
Meuse-Rhine-Yssel (MRY) studied in the Netherlands. 

For all countries, the extracted datasets covered approximately a period of 10 years, 
starting from the 2010s. Different edits were applied across countries. For example, 
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after editing, the analyses carried out cover out the period 2016 ‑ 2020 for France, 
and the period 2010 to 2020 and 2021 for Spain and the Netherlands, respectively. All 
countries analysed the different lactations separately with univariate models. Common 
edits were applied by all three countries on parity, age of calving at different parities 
(age of calving between 23 and 42 months and 35 to 60 months for 1st and 2nd parities 
respectively) and extreme phenotypic values. In all countries, only cows with known 
parents were considered. Only Days in Milk (DIM) between 5 and 305 were retained 
in France and in the Netherlands, between 5 and 400 in Spain. 

Briefly, the datasets with production and health traits (MY, PY, FY, PC, FC, and SCS) 
for Holstein included around 36 million test-day records associated with around 7 million 
French first- and second-parity Holstein cows, around 20 million TD records associated 
with around 1 million Spanish first- to third- parity cows, and around 7 million TD records 
associated with around 500 thousand Dutch first- and second‑parity Holstein cows. 
These cows were distributed in around 45,000 French herds, around 4,600 Spanish 
herds, and around 1,500 Dutch herds. 

Meteorological data were provided by Météo-France (Safran database) for France, by 
the National Meteorological Agency (AEMET) for Spain, and were extracted from the 
Koninklijk Nederlands Meteorologisch Instituut (KNMI) website for the Netherlands. 
Weather records were available for the French territory in the form of a grid of 
9,892 8x8km squares, for 1,993 Spanish weather stations, and for 34 Dutch weather 
stations. Each herd was connected to theses meteorological information through the 
(partial) ZIP code of the farm.

For each daily record measured in each weather station, a Temperature – Humidity 
Index (THI) was computed using the NRC (1971) formula:

THI = (1.8*T+32)-(0.55-0.0055*RH)*(1.8*T-26)

with T being the average daily temperature (degrees Celsius) and RH the average 
daily relative humidity. 

The phenotypes (MY, FY, PY, FC, PC and SCS) of each lactation were analysed in 
separate studies. THI was calculated as the average THI of 3 days (in Spain and in 
the Netherlands: 3 days before the record; in France: day of TD and 2 days before).  

For each population, the effect of THI on phenotypic performances at the population 
level was estimated using the following model:

y = Xβ + Z1 a + Z2 p + e

where y, β, a, p and e are respectively the vectors of phenotypes, fixed effects, additive 
genetic random effects, random permanent environment effects and the random 
residuals respectively, and X, Z1 and Z2 are the incidence matrices for the listed effects. 
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The fixed effects were almost the same in all countries, excepted the gestation stage 
that was included in the French and in the Dutch model but not in the Spanish one. 
However their combination differ from one country to the other: 

•	 France: Herd-Year, THI, DIM, gestation stage, month of calving and age at calving.

•	 The Netherlands: Herd-Year, THI, DIM, gestation stage, age at calving‑year‑ season.

•	 Spain: Herd-Year-Season, THI, DIM and age.

Figure 1. Effect of THI on MY, FY, PY FC, PC and SCS on cows in 1st lactation, according to the country 
and to the breed (FRA=France; NLD = the Netherlands; SPA = Spain; HOL=Holstein; MON=Montbéliarde, 
MRY=Meuse-Rhine-Yssel).
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Figure 2. Effect of THI on MY, FY, FC and SCC on French Montbéliarde and Dutch Holstein cows in 1st 
and in 2nd lactation (FRA=France; NLD = the Netherlands; HOL=Holstein; MON=Montbéliarde).

Results and 
discussion 

The estimated effects of THI on MY, FY, PY, FC, PC for 1st parity cows of the three 
breeds and of the three countries, and on SCS for Dutch and French populations are 
presented in figure 1. The estimated THI effects on MY, SCS, FY and FC in 1st and 
2nd lactations are compared on figure 2 for French Montbéliarde and Dutch Holstein 
cows. Estimated THI effects presented on both figures were averaged using a rolling 
basis of 5 THI units to smooth the fluctuations. 

This study covered several breeds, climatic conditions and farming systems. A common 
approach was defined between countries and breeds to identify heat stress indicators 
and to measure their impact on the cow performances. 

Dutch results of estimated effects of high THI must be interpreted carefully since the 
Netherlands are exposed to oceanic climatic conditions, with moderate daily variations. 
Only 66 days with a daily THI over 72 were observed within 10 years (2010-2019). 
However, THI over 60 were observed on average 120 days each year during the same 
decade, which means that the effect of a moderate heat stress can be measured using 
Dutch data. The frequency of days with very high THI was much higher in France and 
in Spain (eg. in France, pending on the region, between 88 and 345 days with a THI 
over 72 observed within 5 years).

This study showed that increasing THI had a negative impact on all studied traits, but 
more prominent for production than for SCS. To illustrate that, the estimated decrease 
in FY between 50 and 70 units of THI (ie., 9 and 22 ºC of daily average temperature for 

-2

-1,5

-1

-0,5

0

0,5

1

25 30 35 40 45 50 55 60 65 70 75 80

M
ilk

 Y
ie

ld
 k

g/
da

y

THI

Milk Yield

FRA - MON - L1 FRA - MON - L2 NLD - HOL - L1 NLD - HOL - L2

-0,1

-0,05

0

0,05

0,1

0,15

0,2

0,25

25 30 35 40 45 50 55 60 65 70 75 80

SC
S

THI

SCS

FRA - MON - L1 FRA - MON - L2 NLD - HOL - L1 NLD - HOL - L2

-140
-120
-100

-80
-60
-40
-20

0
20
40
60

25 30 35 40 45 50 55 60 65 70 75 80

Fa
t Y

ie
ld

 g
/d

ay

THI

Fat Yield (g/day)

FRA-MON-L1 FRA-MON-L2 NLD-HOL-L1 NLD-HOL-L2

-0,3
-0,25

-0,2
-0,15

-0,1
-0,05

0
0,05

0,1
0,15

0,2

25 30 35 40 45 50 55 60 65 70 75 80

Fa
t %

THI

Fat content

FRA - MON - L1 FRA - MON - L2 NLD - HOL - L1 NLD - HOL - L2  
 
 



200

New breeding tools in climate change

Proceedings ICAR Conference 2022 Montreal

the relative humidity in summer in France) corresponds to 11% of the daily production 
of 1st parity French Holstein cows. The pattern of the curves of THI effects depended on 
the trait: for MY, SCS and PY, the THI effects were almost stable below 50 (with some 
exceptions such as the French Holstein cows for PY), while a decline was observed 
all along the THI scale for FY, FC and PC. 

Some differences of magnitude of the estimated effects and of THI-thresholds were 
observed between countries, more than between breeds, particularly for the yields 
and for SCS. For MY, FY and PY, moderate THI (50-70) had a stronger impact on the 
performances of French females than for the other populations. For SCS, the effect of 
increasing THI over 50 was stronger for the 1st parity French cows. The comfort regions 
observed in France were relatively low when compared to the literature (Carabaño 
et al., 2017) and to the two other countries. This could be explained by differences of 
farming systems, that are often based in France on pasture. Thus French cows are 
often exposed to outside temperatures (even if they are kept inside during very hot 
periods) which is almost not the case in Spain. In the Netherlands, a large proportion 
of females included in this study were raised in farms equipped with automatic milking 
systems, with less grazing and potentially equipped with barns more adapted to heat 
than the average Dutch farms. Brügemann et al. (2012) also reported lower milk yield 
losses in feeding systems based on crop production than on pasture. The exposure to 
wind, more frequent in summer in oceanic regions than in continental ones may also 
explain some differences. In Spain, a probable acclimatization along the large periods 
of high temperatures during the summer and the use of heat abatement devices and 
mitigation practices in many farms could also explain some differences with the two 
other countries. 

This study showed that heat stress indicators could be defined, combining performance 
and meteorological data. Increasing THI, mostly due to increasing temperatures, had a 
negative impact on all studied traits and all breeds. The estimated impact differed from 
one trait to the other and it was more prominent for production than for SCS. Therefore, 
heat stress tolerance is a complex trait. The studies are going on with reproduction traits 
in order to get a global view on the major traits included in breeding goals in dairy cattle.

Differences of magnitude of the effects of heat stress and of THI-thresholds were 
observed between countries, more than between breeds. This could probably be due 
to differences in farming systems and, in the case of Spanish cows, an acclimatization 
along the summer periods. 

This study received funding from the European Union’s Horizon 2020 research and 
innovation program under grant number 101000226 (Rumigen). This project adheres to 
EuroFAANG (https://eurofaang.eu). The CAICalor project was funded by APIS‑GENE. 
The authors thank Meteo-France, AEMET and KNMI for the meteorological data and 
INRAE-CTIG, CONAFE and CRV for the performance and pedigree data.

The use of the high-performance cluster was made possible by CAT-AgroFood (Shared 
Research Facilities Wageningen UR, Wageningen, the Netherlands).
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This study aims to describe the practical experience of introducing a new udder health 
monitoring service in Estonia and Thuringia, Germany. This new service is based on 
the combination of somatic cell count (SCC) and differential SCC (DSCC) test day 
results obtained through regularly performed dairy herd improvement (DHI) services.

A new udder health report based on SCC and DSCC information was developed. 
It allows to categorised the udder health status of a cow into four different groups: 
Udder Health Group (UHG) A – healthy, SCC <200,000 cells/ml and DSCC <65%, 
B – onset of mastitis, SCC <200,000 cells/ml and DSCC >65%), C – (active) mastitis, 
SCC >200,000 cells/ml and DSCC >65%, D – chronic mastitis, SCC >200,000 cells/
ml and DSCC <65%.

Regularly available DHI test results were used to investigate the performance and 
future development (e.g. high SCC at next test day, culling) of cows in the different 
UHG. Findings were used during the launch of the new udder health report as they 
contribute to provide evidence on the added value of the service based on local data. 
DHI service field staff was trained about the new service to support new herds enrolling 
to the new service. Different media and local events such as exhibitions and annual 
meetings were used to further promote.

Practitioners working with the new udder health report described that it helps them to 
improve their herd management, particularly cubicle management and milking routine, 
resulting in overall better udder health of the herd and lower consumption of antibiotics 
with regards to mastitis treatments.

Keywords: Mastitis, SCC, milk recording, antibiotics.

The companies EPJ and Qnetics offer various services to dairy farmers in Estonia and 
Thuringia, Germany, respectively. Among other things, these include the organisation 
and execution of DHI testing for dairy cows, ewe, and dairy goats, milk payment 
analysis, and advisory services for herd management, dairy cow nutrition and milk 
quality challenges. 
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The total number of dairy cows is 80,000 and they are kept in approximately 400 herds, 
which translates into an average herd size of 200 cows. More than 96% of herds are 
enrolled to DHI services. The average annual production is at 10,484 kg milk, 394 kg 
fat, and 345 kg protein per cow. 

There are 94,548 dairy cows on 282 dairy farms in Thuringia, Germany. The vast 
majority (98.2%) of these farms are utilising dairy herd improvement services on a 
regular basis. The average annual production is at 9,978 kg milk, 404 kg fat, and 345 
kg protein per cow. The average herd size is at 335 cows and approximately 60% of 
all cows are kept on 25% of all farms. 

The key motivation of EPJ and Qnetics was to be able to provide farmers with better 
DHI-based services for managing udder health, in particular earlier detection of udder 
health issues.

Regularly available DHI samples are analysed on CombiFoss 7 DC. The SCC and 
DSCC test day results are then used to were categorised the udder health status into 
four different udder health groups (UHG, Figure 1): 

•	 A – healthy: 			   SCC <200,000 cells/ml and DSCC <65%, 

•	 B – onset of mastitis: 		 SCC <200,000 cells/ml and DSCC >65% 

•	 C – (subclinical) mastitis:	 SCC >200,000 cells/ml and DSCC >65%

•	 D – chronic mastitis:		  SCC >200,000 cells/ml and DSCC <65%

The SCC cut-off of 200,000 cells/ml used is according to IDF recommendations (IDF, 
2013). The DSCC cut-off of 65% has been identified as optimal cut-off in a study 
where the actual udder health status of cows as defined by bacteriological testing was 
available (Schwarz et al. 2020a). 

Dairy farming 
in Estonia and 
Thuringia, 
Germany

Udder Health 
Group concept 

Figure 1. Dairy herd improvement results of one dairy farm (random example) 
to illustrate the four different udder health groups: A – healthy, B – onset of 
mastitis, C – (subclinical) mastitis, D – chronic mastitis. 
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Comparing milk weights in the different UHG (Figure 2) based on data from Estonia 
and Thuringia, Germany, interesting differences were found. These differences, in 
turn, indirectly confirm the interpretation of the four groups. Cows in group A showed 
the highest performance, which was to be expected as they are healthy based on 
their low SCC and low DSCC test day results. Cows in group B showed a significantly 
lower performance than those in group A, which is explainable based on inflammatory 
processes (i.e. high DSCC values) consuming energy that is then not available for milk 
production anymore. This confirms that cows in group B might be in the early stage 
of mastitis. Presences of mastitis pathogens and inflammatory processes has been 
described in such cows before (Schwarz et al., 2011a,b; Pilla et al., 2012; Schwarz 
et al., 2020a). Lower performance of cows with elevated SCC have been described 
before, but we could observe significant differences between cows in groups C and D. 
Those in group D performed significantly worse than cows in group C. Cows in group 
D are considered to experience chronic mastitis and it is well-know that such chronic 
infections lead to destruction of milk producing tissue explaining the low performance. 
All results have been published in detail elsewhere (Schwarz et al., 2020b).

Above-described results have been presented to dairy farmers at various events and 
contributed to create a lot of interest because most farmers would be interested in 
optimising the performance of their herds and understand the distribution of their cows 
among the 4 UHG. 

New udder health reports to visualize and process the combined results of SCC and 
DSCC were implemented in Estonia and Germany, respectively. Besides a graphical 
overview of test day results, a benchmarking table (Figure 3) is core of this report. The 
table provides a detailed overview on number and percentage of cows in each of the 
four UHG, target values, and average results of all herds tested. Percentage numbers 
are colour-coded to simplify the interpretation of the results. 

Figure 2. Average daily milk weights in different Udder Health Groups based on data from Estonia 
(left) and Thuringia, Germany (right).

New udder health 
report introduced
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Herds working with the new udder health report agree that “the information provided 
through the new report and the arising possibilities aid in improving animal health and, 
at the same time, lead to better usage of resources and higher animal performance.” It 
allowed them to, among other things, fine-tune their cubicle management and milking 
hygiene and helped them to document improvements. This, in turn, was invaluable 
because staff could be motivated to do some extra effort and apply known measures 
used to prevent mastitis. Often in collaboration with veterinarians, herds also based 
selective dry cow therapy decisions on the information provided through the new 
udder health report. As a result, the number of antibiotic treatments and the volume 
of wasted milk were reduced. 

In EU, a new Animal Health Law (http://data.europa.eu/eli/reg/2016/429/2021-04-21) 
has been introduced recently and is in force now. The livestock industry is supposed to 
avoid unnecessary use of antimicrobial treatments and, instead, focus on prevention of 
diseases. In this context, veterinarians appreciate the new udder health report because 
it helps them to convince herd managers to improve in terms of prevention of mastitis. 

A comparison of herds with different proportions of cows in UHG A has been conducted 
(Schwarz et al., 2022). A key finding was that average daily production was significantly 
higher and bulk tank somatic cell count and number of antibiotic mastitis treatments 
were significantly lower in herds with high compared to herds with low proportions of 
cows in UHG A. 

Mastitis is still a huge challenge on dairy farms and is one of the key reasons for 
premature culling of dairy cows. The new SCC and DSCC-based udder health report 
helps dairy herds to better manage udder health as it provides further insights in herd 
management. We have already observed improvements in terms of dairy cow health, 
welfare, performance, and a reduced number of antibiotic mastitis treatments. It is 
expected that the percentage of herds utilising the new service will continue to increase 
and that longevity and milk quality will improve in the long run as well. 

Experience from 
the field 

Figure 3. Screenshot of benchmarking table from new udder health report of a 
randomly selected herd as introduced in Estonia.

Conclusion
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ICAR member’s needs regarding the use of robots and 
sensor data

C. van der Linde and M. Burke

 ICAR, Utrecht, The Netherlands

A survey was conducted among 13 ICAR full members (mainly milk recording 
organisations) about their needs and how they use robot and sensor data in their 
services. Main aims of the survey were to inventorise the purpose, availability and 
needs of the use of robot and sensor data and the role that ICAR can play for members 
in using these data for their services.

The survey was also conducted among 4 ICAR associate members (manufacturers 
of robots or sensor devices) about the value of ICAR certification and their needs for 
ICAR approval of robot and sensor devices.

All full members that participated in the survey are using daily milk yields from robots 
for at least the calculation of the milk yield at the day of milk recording. Few other 
organisations use some robot measured traits like milking speed and teat conformation 
traits in their genetic evaluation. Other robot or sensor data is hardly used for official 
milk recording or genetic evaluation, but are used for heat or health alerts with some 
robot data reported back to the farmer for management purposes.

For members, the main traits of interest from robot and sensor data are the standard 
milk recording components, (for management and genetic evaluation), as well as body 
weight, milking time and milking speed. 

Not being able to use robot and sensor data in their services is a hurdle members 
would like to overcome. Members expressed the need for harmonisation of robot and 
sensor outputs, to help with the uncertainty about the quality of data (e.g. is calibration, 
maintenance done). Many members are in the process of implementing ICAR Animal 
Data Exchange standards to solve issues with harmonisation of output.

For data from sensors, like activity meters, there is the question of which modifications 
to the data needs to be done and how to incorporate that information into genetic 
models or services.

The need for ICAR certification of devices, especially for official milk recording was 
seen as a key, as also it is to maintain data quality in general. If devices would not 
meet the standards for certification, there is still value in ICAR assessing and validating 
the accuracy level of the data from such devices. The ICAR validation of devices or 
systems should be clear for all stakeholders (manufacturers, members and users).

For manufacturers the value of ICAR certification is high. It enables them to get access 
to certain markets, it enables their customers to use data generated by the devices in 
milk recording or genetic evaluation. It also proofs the ability of the device to generate 
quality data.

Regarding the value of ICAR approval of sensor or robot devices, manufacturers ask 
the question for who is the benefit of ICAR approval. And what the value is for farmers. 

Abstract
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There needs to be a balance between costs and benefits for them. Another remark 
was that sensor devices and certain traits measured by robots are generally designed 
for herd management, the development of these devices was not targeted on ICAR 
certification. Manufacturers see the risk that approval of lower accurate devices would 
dilute the value of current ICAR certification.

ICAR has a long history in providing certification of devices and guidelines for the 
recording of quality animal data. For official milk recording, data is collected with ICAR 
certified milk meters and samplers. Nowadays, the recording of animal data is rapidly 
expanding. Farmers have invested in robot or sensor devices and are often asking 
ICAR members to use these data for services like milk recording. But getting access 
to these data and being able to include these data in existing or new services can 
be challenging. Therefore, ICAR conducted a survey among 13 ICAR full members 
(mainly milk recording organisations) and 4 ICAR associate members (manufacturers 
of robots or sensor devices). Aims of the survey were to inventorise members needs 
of the use of robot and sensor data, the value of ICAR certification or approval for 
manufacturers and members and manufacturers needs regarding ICAR certification 
or approval of devices.

The list of questions for this survey were composed by the ICAR staff. The survey 
for ICAR full members consisted of 9 questions (see Appendix 1). Questions asked 
to the members were about the services they offer to their clients, the current use of 
and needs for use of robot and sensor data in their services, the main hurdles they 
face in not being able to use these data and their needs for certification or validation 
of robot and sensor devices by ICAR. 

The survey for manufacturers consisted of 5 questions (see Appendix 2). Questions 
asked to the manufacturers were about the devices or products they sell to their 
customers, their need for and the value for them of ICAR certification or approval.

The questions were mainly open questions. The survey was conducted during March 
through May 2022, by video meetings asking the questions to the participants. There 
were 16 full ICAR member organisations approached, involved in at least milk recording, 
and 4 ICAR associate members.

A total of 13 full members from 11 different countries participated in the survey. These 
participants were from Australia, Canada, Czech Republic, Denmark, Finland, France, 
Germany, Ireland, The Netherlands, Norway and the United States. All the participants 
are involved in processing milk recording data. Most of the organisations also carry out 
related services like animal recording, milk analysis in the lab and genetic evaluations.

All participants collect milk yields from robot devices. Some of them also collect 
other data like fat and protein percentage, somatic cell count, milking speed and teat 
coordinates. As main reasons for not using more traits than milk yields are mentioned 
a lack of standardisation of the output of robot devices across manufacturers, a lack 
of ICAR certification and problems with linkage between observation and official ID. 
Most participants use the milk yield data only to calculate the milk yield at the day of 
milk recording, some use daily milk yields also to calculate lactation yields. But other 

Introduction

Material and 
methods

Results and 
discussion



211

ICAR Technical Series no. 26

Van der Linde and Burke

traits than milk yield, measured by robots or sensors, are not used for other official 
services like milk recording, genetic evaluation or pedigree certificates.

Some members are investigating opportunities to include milking speed data from 
robots in the genetic evaluation of milking speed. Daily yields, heat alerts and other 
sensor alerts or data are used by some members for management reporting. Many 
members are considering to implement the ICAR ADE/iDDEN standards, some of 
them already have started implementing.

The data from robot or sensor devices that members would like to use for their services 
are components (fat and protein), milking time, milking speed, box time, body weight, 
body condition, activity data, rumination data. For components that are measured by 
robots (or any other on-line or in-line device) two conditions are mentioned though, the 
accuracy of the components measured needs to be known and there needs to be a 
frequent calibration of the device. Many members would like to use these components 
data for the milk recording and some also indicated to want to use it for the genetic 
evaluation.

Some of the most frequent hurdles mentioned that prevent the use of robot and sensor 
data for services to dairy farmers include; access to data, data collection (in regard 
of demand of time for milk recording), lack of advantage for the farmer to share data, 
lack of harmonisation of outputs, getting the same information from different systems, 
quality of data (accuracy, consistency, calibration and maintenance of device), source 
of information (version of software and hardware) not always available, missing 
certification of data and output and missing information about definition of data value 
and missing documentation. 

Members clearly state that ICAR certification is important to maintain the quality of 
data at the current level. The quality of data is especially important to them for use in 
the genetic evaluation. Members are also interested in ICAR approval of devices that 
record data that does not meet criteria for ICAR certification, provided that:

1.	 They know the accuracy of the data measured.

2.	 They know with which type of device the data is measured.

3.	 ICAR provides recommendations about the required quality of data for certain 
purpose (e.g. genetic evaluation, milk recording, herd management etc.)

4.	 ICAR provides guidelines or recommendations about how members could use 
these data for different purposes.

5.	 Manufacturers provide information about the quality of the recorded data, about 
the relationship between the measured and real data value, about the proper use, 
maintenance and calibration of the device etc.

6.	 Data output across manufacturers of data measured on the same traits will be 
standardized as much as possible.

An important point of discussion is how ICAR could approve devices that do not meet 
current certification criteria. An even more important question is probably what kind of 
approval to assign to a potential ICAR test for these devices. The outcome of the test 
should be valuable for the manufacturer and the costs of the test should be balanced 
with the value for them. ICAR and ICAR test centres should be able to come up with 
clear and consistent test plans for these devices.

Needs of ICAR 
members 
regarding 
certification of 
sensor or robot 
devices
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There were 4 manufacturers participating in the survey. All of the manufacturers are 
producing ICAR certified devices for milk recording, some of them are also producing 
other recording devices like sensors. 

For manufacturers the value of ICAR certification is high. It enables them to get access 
to certain markets, it enables their customers to use data generated by the devices in 
milk recording or genetic evaluation. It also proofs the ability of the device to generate 
quality data.

Regarding the value of ICAR approval of sensor or robot devices, manufacturers ask 
the question for who is the benefit of ICAR approval. And what the value is for farmers. 
There needs to be a balance between costs and benefits for them. Another remark 
was that sensor devices and certain traits measured by robots are generally designed 
for herd management, the development of these devices was not targeted on ICAR 
certification. Manufacturers see the risk that approval of lower accurate devices would 
dilute the value of current ICAR certification.   

Daily milk yields from robots are widely used by ICAR members to calculate milk 
yield at the day of milk recording. Robot measured traits like milking speed and teat 
conformation traits are used by a few members in their genetic evaluation. Other 
robot or sensor data is hardly used for official milk recording or genetic evaluation, 
but e.g. heat or health alerts or some robot data are reported back to the farmer for 
management purposes.

Main traits from robot and sensor data that members want to use for their services are 
the components for milk recording and for the genetic evaluation, body weight, milking 
time and milking speed. 

The main hurdles preventing ICAR members from using robot and sensor data in their 
services are: 1) need for harmonisation of robot or sensor output, 2) uncertainty about 
the quality of data and 3) unknown which modifications to the data needs to be done 
to incorporate this information into genetic models or services. Many members are in 
the process of implementing ICAR Animal Data Exchange standards to solve issues 
with harmonisation of output.

ICAR certification or validation is important for ICAR members to maintain the quality of 
data at the current level, especially for milk recording. If data recorded by devices does 
not meet criteria for ICAR certification, members are still interested in ICAR approval 
of these devices to use these data. In that case it is important to know the accuracy of 
recorded data, the type of device that recorded the data and to get recommendations 
how and for which purpose to use the data. 

Manufacturers play an important role in providing information about the quality of 
recorded data and about maintenance of the device and by standardising data 
output. The ICAR validation of devices or systems should be clear for all stakeholders 
(manufacturers, members and users).

ICAR certification enables manufacturers to get access to certain markets. Therefore, 
the value of ICAR certification is high for them. It also enables their customers to use 
data generated by the devices in milk recording or genetic evaluation. ICAR certification 
also proofs the ability of devices to generate quality data.

The main question of manufacturers about the value of ICAR approval of sensor or 
robot devices is who will benefit of it. What is the value for farmers, for manufacturers 
and for milk recording or related organisations? For manufacturers, there needs to be 
a balance between costs and benefits. Manufacturers also see a potential risk that 
approval of lower accurate devices would dilute the value of current ICAR certification.

Summary and 
conclusion
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Which services do you offer to your clients? 

1.	 Animal identification		  

•	 Milk recording (cattle)		  

•	 Beef recording (cattle) 		  

•	 Herdbook recording 		  

•	 Conformation recording 		  

•	 Data processing 			  

•	 Laboratory analysis (milk) 		  

•	 Laboratory analysis (DNA) 		  

•	 Genetic evaluation (dairy cattle) 	 

•	 Others…				    

2.	 Do you make use of/include robot data in your milk recording service? If so, which 
data and how many herds/cows/records? 

3.	 Do you flag/mark the data coming from sensors or robots to discern it from data 
sourced from approved milk recording sampling? 

4.	 Do you restrict the use of sensor data? e.g. Ok for management but not for genetic 
evaluation / pedigree certs? 

5.	 Do you make use of/include other robot or sensor data in other services? If so, 
which data for which service? 

6.	 For which of these services do you want to make use of robot or sensor data and 
which data do you want to use? 

7.	 What are the main hurdles to not be able to use robot and sensor data for your 
services? 

8.	 What are your needs regarding certification of sensor or robot devices? What is 
the value for your organisation? 

9.	 What do you want ICAR to develop regarding the use of robot and sensor data 
for your services? 

Appendix 1. 
Questions of 
survey among 
ICAR full members 
about their needs 
for use of robot 
and sensor data.
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1.	 Which kind of devices do you produce/sell to your customers?

•	 Milking robots				  

•	 Sensor devices			 

•	 Other recording devices		

•	 Data processing 			

•	 Others…				  

2.	 Are there any of these devices you would like to be certified by ICAR?

3.	 What is the value for your company of ICAR certification?

4.	 Is there merit in ICAR certifying your sensor devices or specific traits measured 
by your robot?

5.	 Open discussion on the questions above.

Appendix 2. 
Questions of 
survey among 
manufacturers 
about the value of 
ICAR certification 
and their needs 
for ICAR approval 
of devices.



215

ICAR Technical Series no. 26

Supporting automatic milking farms in milk recording

K. Leppikorpi

Association of ProAgria Centres, P.O. Box 251, 01301 Vantaa, Finland 
Corresponding Author: kirsi.leppikorpi@proagria.fi

In Finland there are 3755 herds in milk recording (73 % of all herds) and 200 134 cows 
(80 % of all cows). Currently, 52 % of the milk recording´s milk comes from robotic 
herds, and the estimated amount by 2035 is 80 %. More than 90 % of the Finnish farms 
are doing their milk recording work by themselves, such as milk sampling and data 
transferring, but there are several software and customer support services available. 
The calculation of milk recording data, reporting to customers and the maintenance 
of the programs are handled by Mtech Digital Solutions Ltd.

The Finnish milk recording organization ProAgria offers various services to all farms, 
but here the focus is on services for automatic milking farms (AMS) to help their daily 
work and keep them involved in milk recording. The basic services provided to AMS 
farms are different technical milk sampling services, milk recording and sampling 
data´s transferring service and customer service. In addition, AMS farms are offered 
a new comprehensive service that considers a whole farm. This service is still under 
development and is therefore called “AMS development program”.

Keywords: AMS, milk recording.

Most of the Finnish AMS-farms do regularly milk recording and milk sampling by 
themselves without difficulty. However, part of farms finds this laborious and would 
like to either outsource the work or stop taking milk samples. There would be more 
demand for outsourcing these if more services were available.

There are delays in the data recording on some farms, which is reduced by offering a 
data transfer and recording services. The Data Quality Points system has helped reduce 
data recording delays and farms can monitor their officiality in milk recording monthly.

Milk recording service is offered for robot farms. The expert will take and save the 
milk data remotely from the customer’s robot and checks at the same time all relevant 
information has been sent on time and the reports are fine..

Abstract
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Customer service assists all the farmers in milk recording, but they also support robot 
farms with their many technical issues in milk sampling. At the same time, they monitor 
the situation of data quality points of the farms.

There are plans to develop different new support services for robot sampling:

1.	 Continuous basic service, sampling 1 x / month by a technician.

2.	 Temporary service, according to the customer’s needs, e.g., during seasonal work 
or in case of sickness etc.

3.	 Customer sampling support service; the customer takes care of the sampling, but 
can get help in many ways, if needed.

4.	 Help desk -phone, technical support.

5.	 Equipment rental (samplers, scanners).

6.	 Maintenance service for sampling equipment.

Some of these services already exists, but availability is currently limited to certain areas.

Connection problems on farms causes the data transfer to be interrupted. There are 
only a limited number of technicians with technical expertise and located in certain 
areas; training and new employees are needed. Long distances between facilities and 
reaching the customers who benefit the most from the services are also challenges.

Services may not be needed immediately on a large scale because farms are used 
to doing it themselves and there is no ready-made model. If there is no visible order 
for the service, it is easy to think that there is no need for it. In Finland, the challenge 
of the robot sampling service is the long distances between the farms, it is difficult 
to make it profitable. In addition, other work should be arranged for the employee in 
connection with farm visits. However, the number of AMS farms using the data transfer 
and recording service has increased, as well as using milk recording customer service´s 
advices for milk sampling. So, we are going in the right direction.

Customer service

Robot sampling

Challenges

Conclusion
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With the investment of new technologies for on-farm data measurement and recording, 
there is an increasing amount of data available from dairy operations. These data 
include estimates of traditional measures such as milk yield and components, but 
also provides access to measurements on new traits of interest to herd recording 
organizations. With the volume of data available, it is logical to find new paths for 
data movement from on-farm software or manufacturer servers into organization 
databases. ICAR has supported milk recording organizations and dairy producers in 
the traditional test-day collection of data with standards and equations that deliver data 
for daily management decisions and to qualified information for genetic evaluations. 
Today, the challenge that exists for recording organizations and national databases 
is balancing the volume of data from new sources with the accuracy of the individual 
measurements. Further, the speed of data flow has the potential to allow unqualified 
data to enter databases before issues or concerns are identified. The challenges of 
veracity, volume and velocity of new streams of data lead to the question ‘how good 
is good enough’ for usability by organizations and databases. 

In addition to identification of the source, an evaluation of the data quality at a 
system level is key for determining the usability or suitability. Focus on the automatic 
identification as well as the automatic recording of measurements is critical, both on-
farm and as data moves into central databases. In addition to linkage of animal ID to 
measurements, considerations on the completeness and consistency of continuous 
data flow are of merit. Finally, the editing of data points, including estimation of missing 
observations and the precision of individual measurements are a component of data 
quality and contribute to the usability of data. A fresh approach on the inclusion of 
new streams of data is needed. This systems quality approach should embrace the 
technology of on-farm sensors that generate valuable insights into dairy cattle milk 
yield, milk composition, conformation, behavior and activity with the goal of inclusion 
of usable data that is ‘good enough’ rather than focus on data exclusion based on 
precision of an individual measurement.

Herd recording programs have traditionally relied on data collected on the dairy during 
periodic visits and includes milk yields and cow event data accompanied by visible cow 
identification by organizational staff. The source of the yield data, and subsequent milk 
component estimates, is ICAR-certified devices either owned by the herd recording 
organization or by the dairy operation. Even when properly installed and operated 
under ideal circumstances, the data provided is limited to the recording day and only 
provides an estimate of cow performance during that timeframe. This system has 
provided excellent data for both management systems and genetic evaluations as the 
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accuracy of these measurements is essential for modelling the performance of cows 
across the interval between visits. However, the development of new technologies for 
measurement of various cow traits that include both traditional yield and component 
measures, but also data that physically describes cow conformation, movement, 
and even provides estimates of cow health and well-being. The adoption of these 
technologies by dairies has led to more data available to herd recording organizations 
and their customers cooperatively providing data with the expectation of real-time 
access to results and information for management decisions affecting all aspects of 
the dairy operation.

While there is, and will be, a segment of dairy operations participating in herd recording 
programs in the traditional fashion, there are opportunities for new streams of dairy data 
that may be used and useful to herd recording organizations. However the question 
that faces the industry with these data streams is how or can we use these data? The 
volume of data and the velocity of data generation is staggering relative to traditional 
data ingestion models. But with this data flow also comes an increased variation in 
measurements and questions on the validity of the data as it flows automatically from 
the dairy operation to external databases. In summary, how good is good enough? This 
paper does not propose to set standards or guidelines for use of data but does offer a 
review of considerations for herd recording organizations as they look to development 
of programs and services offered to the modern dairy operation. 

New streams of dairy data should be reviewed for the use, useful and usability of the 
data on various levels. Data used for management decisions or animal health/welfare 
metrics will most likely have different measures of quality associated with it compared 
to data used for genetic evaluations. However, this does not mean that data use is 
exclusionary for these purposes, rather there needs to be an evaluation of data sources 
and continuous monitoring of quality. One of the key considerations with new streams 
of dairy data is the dynamic nature of data collection/measurement. Many of these 
systems rely on the simultaneous recording of animal identification and measurement 
of the traits(s) by the system. While the location or pen identification may be more 
important for certain management traits relating to feeding or milking metrics, the linkage 
of animal identification used for data measurement with the official identification of the 
animal is an important part of the data quality. Herd recording organizations should 
have or will need to develop protocols for evaluating both on-farm and data transfer 
for identification linkage.

As previously noted, data quality needs to be monitored as we look to new streams 
of dairy data. Traditionally, the accuracy of the individual measurement has been 
considered critical to the assessment of usability and said accuracy is an important part 
of data quality. However, quality data has additional elements that must be considered 
as we look to use and usability in the volume of data available on many dairy operations. 
These quality elements include accuracy, completeness, consistency, credibility and 
custody of the data. A continuous approach to evaluation and monitoring of data quality 
is paramount for herd recording organizations. For some data measurements, bias and 
precision are important are varying levels, but other sources of error may negatively 
affect the usability of data for that metric or measurement. 

While some of the quality elements can be identified and managed by assurance 
programs, there are elements that require external review by ICAR or other organizations 
to understand data handling in both farm management software and as the data moves 
to external databases. These include an understanding of data smoothing, estimation 
of missing measurements, and the distribution of errors relative to the collection 
system. External validation of these systems along with internal assurance programs 

Data use and 
quality



219

ICAR Technical Series no. 26

Mattison and Sievert

is essential for determining usability however should not be viewed as exclusionary 
for data ingestion by herd recording organizations. Rather, consistently recording the 
source of the data measurement(s) in the data flow will allow for usability decisions to 
be made as the use of data is determined. 

There is no simple answer to the question ‘how good is good enough’ in this presentation 
or in practice. However there is opportunity for new and dynamic approaches to evaluate 
new streams of dairy data by herd recording organizations. This approach should have 
five key considerations that include:

1.	 Validation of system data quality and recording the source of data measurements 
in the data flow.

2.	 Focus on the ingestion of data from farm management software instead of exclusion 
of data based on measurement accuracy.

3.	 Development of routine data quality monitoring tools to assure consistent and 
credible data.

4.	 Focus on the data use, usefulness, and usability for specific needs rather that an 
‘all or nothing’ approach to data use.

5.	 Efficient removal of incomplete data instead of attempts to edit or standardize the 
data to meet arbitrary standards or improve the data quality.

This approach is a departure from traditional data collection and use schemes but 
is essential with new streams of dairy data. The volume and velocity of data may be 
viewed as a deterrent but with a data quality monitoring program, there is opportunity 
to deliver information to dairy operations, herd recording organizations, and national/
multi-national databases.

How good is good 
enough?
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The evolution towards the automation of dairy farms is booming in the agricultural 
world, the digital data of breeders must take the turn of high-speed exchanges and 
allow valuation for the purposes of advice, calculation of indices for the genetics, but 
also predictive models on milk production and also on the management of their herd 
with short and long term modelling. 

With the arrival of robots, connected milking parlours and sensors installed directly 
on the animals, breeders’ demands are exploding. Each automaton needs individual 
data such as the inventory and the events of all the animals to ensure their operation 
and feed their algorithm to alert breeders on a daily basis in terms of heat detection 
and health.

Keywords: Cows, data exchange, platform, robot, sensor.

The Eliance federation and its network have been tasked with developing a high‑speed 
data exchange platform called dataHUB360°, to meet the demand of breeders and 
automaton manufacturers for the import of data in real time and the daily export. Today, 
each breeder in the process of installing an automaton requests the dataHUB360° link 
to have the history of inventory data and events for his breeding, and avoid entering 
this information manually.

The second step was to export the sensor data and ensure its daily delivery to the 
evaluation database.

The enhancement of this data has made it possible to offer new services to breeders, 
a comparison by type of feeding system, in connection with the milk production of his 
herd, but also to secure the data feeding the genetic system of tomorrow based on 
actual farm data.

Abstract
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The dataHUB is a Web platform, dedicated to the dairy farmer which allows 
communication with APIs (Cloud manufacturer), but also with automatons on the farm, 
it is intended to be multi-platform and bi-directional in order to enhance the entry of 
data on the farm automatons, and avoid double entry by the breeder.

The main objective is to facilitate the exchange of information between the automatons 
deployed in the farms and the data present in the databases of the Livestock Consulting 
Companies.

To exchange data, the security of exchanges takes on its full extent, as a result the 
dataHUB contains a consent module and generates encryption keys specific to each 
farm, in order to guarantee perfect confidentiality of this personal data.

The system is also able to monitor data exchanges in order to know in real time the 
information that passes through the import and export of the breeders’ automatons.

A monthly history will also be kept to know the data exchanged with the automatons 
of farms, in order to guarantee to the breeders a routing of the data on his breeding.

The system is able to connect to farm automatons installed on computers connected 
to the Internet network, but also on manufacturer Cloud systems.

All exported data is stored in Eliance Livestock Companies database and is used to feed 
applications for official milk performance as well as other milk performance tools focused 
on milk meter monitoring but also many other applications as indicated in following

The datahub solution makes it possible to export the production data of each dairy 
cow which is stored on the milking parlour automatons equipped with milk meters and 
identification, during the milk performance control carried out by Eliance Livestock 
Companies.

These data are processed and then formalized by Eliance Livestock Companies before 
being sent to the central genetic database.

OriWeb was designed to meet 3 main objectives:

1.	 Ensure the processing of daily robot data in order to be able to introduce them into 
technical and genetic information systems such as 24-hour checks

2.	 Optimize robot data processing processes to facilitate and automate the marriage 
of robot and laboratory files during the milk performance.

3.	 Allow the breeder to have these results quickly as soon as they are processed by 
email.

The calculation of cows’ milk production will now be carried out, as recommended by 
ICAR, over 96 hours instead of 48 hours, taking into account all production.

This change makes it possible to align with international standards, to get closer to 
manufacturers’ averages and to reduce the effects of performance control on production 
in the context of busy stalls.

Several levers have been activated to gradually move towards full automation of the 
robot performance check processing chain.

Valuation of the 
data for advise the 
farmer

Function of datahub 
360° 

Use the data for 
genetic evaluation 

OriwWeb, tools for 
robot
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An intelligent engine will search for the robot file information in the data collected 
by dataHUB, eliminating the need for manual robot file collection and integration 
operations.

Centralization of the calculation engine which processes the data as soon as they are 
made available by the dataHUB platform.

OriWeb has been designed to adapt to the specificities of each company, by offering a 
very wide level of configuration, which can personalize, restrict or not use the modules 
offered.

A follow-up module by monitoring milk meters allowing both early detection of meter 
malfunctions and extending the validity of the checks beyond 12 months, as long as 
the monitoring checks confirm the validity of the installation.

This new module, currently intended for checks on milking parlor with milk meter, is a 
real source of savings for Eliance Livestock Companies who can reduce the frequency 
of milk meter check visits. This method uses a Dynamic Linear Model (DLM, West 
and Harrison, 1989).

The average milk yield per stand and milking session is calculated over all milking 
on that stand. The resulting stand average is compared with the overall average. 
The deviation will be close to zero for a properly working meter. A DLM is based on 
a comparison per milking session of the average per stand with the overall average

Milk forecasting is an important issue for dairy cooperatives or milk producer 
organizations.

Res’Prévi is the tool for producing and promoting milk production predictions for 
producer organizations and dairy cooperatives.

Res’Prévi uses two types of data: Data directly from dairies and data from milk 
performance. The dairies provide monthly milk delivery data for each farm as well as 
ancillary data (contracted volume and average milk price in the area). Eliance Livestock 
Companies provide all milk performance data, with also the data from dataHUB , animal 
variations in production as well as feed data.

The Machine Learning algorithm that was produced by the DataLab uses all the data 
described above to observe the impact of the variation of each of them on future milk 
production.

The model therefore learns from history to predict future data. The characteristic of 
Res’Prévi is that the model receives data very regularly, which allows it to adjust the 
prediction week after week.

The data from the dairies are transmitted each month and integrated by the DataLab. 

Today this service is offered to 12 producer organizations and 1 dairy cooperative, 
representing 2,000 farms in France.

ADesse: tools for 
monitoring Milk Meter

Res-Previ: tools for 
dairy forecast
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 GenoCells® is a revolutionary technology to determine with a high accuracy the SCC 
of each cow directly from the DNA analysis of a tank milk sample. Used in France since 
2018, this technology is based on the correspondence between animal genotypes 
(= genetic identity) and presence of their DNA via their somatic cells in the mixing 
milk sample. The SCC results from this disruptive genomic method are as accurate 
as traditional flux cytometry method (r²=0.99). 

GenoCells® is more practical than a classic milk control operation because only one 
tank milk sample is necessary. This method can be performed several once in a year 
and is less expensive by 20% compared to the classic method. 

The dataHUB platform makes it possible to retrieve the milk production of each cow 
between 2 milk tank pick-ups and allows this tool to save significant time for the return 
of the results to the breeder, whether for robots or milking parlours automated.

RoboMat is a data valuation software from robots and automated milking parlors of 
all brands.

All data extracted by dataHUB is used by the Robomat application. The goal is to 
provide appropriate and specialized advice to breeders equipped with automatons,

The system analyses herd performance quickly with or without performance monitoring.

The system produces indicators with real added value and complementary to those 
used in manufacturers’ software. Data from dataHUB is routinely updated, every night 
at 5am.

The system makes it possible to define production objectives at the farm and to compare 
with other farms that are in the same production system. (Notion of benchmarking)

The use of filters (stages of lactation, type of livestock, type of cow, etc.) makes it 
possible to finely analyse the animals in the herd and see which ones are less efficient.

The system also tracks production level and cows that are less productive

Medria Solution supports breeders, advisory bodies and sectors by distributing 
monitoring tools and enhancing the resulting data.

The dataHUB platform is connected directly to the Medria API in order to import all 
farm data, and to export alarms in real time to other applications to carry out valuation 
and consolidate them with dairy data to alert the breeder.

Medria sensors monitor heat, calving, rumination and also animal comfort.

Work is in progress on thermal stress in order to measure the impact on milk production 
and to make farmers aware of the importance of animal welfare.

GenoCells®: tools for 
heath detection

RoboMat: tools for 
robot valuation

Medria Solutions: 
sensor for cow 
monitoring 
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A study was carried out on the kinetics of the animal’s weight during breeding. All 
data was obtained from the dataHUB platform and made it possible to perceive the 
importance of the energy balance during breeding, other studies are needed to confirm 
the influence of weight on breeding.

Today, the data are in the farms and it is the farmers equipped with milking robots, 
automated milking parlours or sensors who are the data providers.

The data begins to circulate for the needs of the breeders first to feed their automaton 
with inventory and event data. The use of data from automated breeders is developing, 
but the breeder must give his consent to use them and define the scope of their use. 
Data multiplexing is the next step because monitoring sensors or robot software also 
need other data from other controllers or sensors to operate.

The valuation of data in breeding is only beginning and the automatons must increase 
the scope of exportable data in order to allow the breeder to be able to share more data 
with his advisers, his experts in order to guide him, and advise him on the management 
of his herd.

Health data is an important issue, and must be harmonized to be usable for advice 
and study purposes.

New perspectives on artificial intelligence are in progress, but the algorithms need a 
lot of data to be robust, and research work is necessary for an optimum valuation of 
all this data.

Research: Influence 
of liveweight kinetics 
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Automatically generated body condition scores (BCS) through image technology 
enable daily assessments of body energy reserves of dairy cows. The availability of 
high frequency data allows for the analysis of specific patterns or points of interest, 
such as nadir BCS, and could result in quick interventions if necessary or tailored 
management adjustments. The objective of this study was to evaluate the effect of the 
decrease in BCS from calving to nadir BCS before first artificial insemination (AI1) on 
pregnancy per AI1 (PAI1) in Holstein cows. A retrospective observational study was 
completed using data collected from 6,100 lactations (primiparous = 3,683; multiparous 
= 2,417) starting between April 2019 and March 2021 in a commercial dairy operation 
located in Colorado, USA. Scores generated by BCS cameras (DeLaval International 
AB, Tumba, Sweden) at calving (BCScalv) and nadir (BCSnadir) were selected to 
calculate the ratio BCSnadir/BCScalv (BCSratio). 

The BCSratio is a representation of the BCS change from calving to nadir, where greater 
BCS loss results in smaller values for the ratio. To facilitate the calculation of PAI1 
probabilities, the resulting BCSratio values were categorized as low (< lower quartile, 
large BCS decreases), medium (interquartile range, moderate BCS decreases), and 
high (> upper quartile, small BCS decreases).  Data were examined using logistic 
regression by univariable models that were followed by multivariable models considering 
calving season, occurrence of disease, and milk yield up to 60 DIM as covariables. All 
the analyses were performed separately for primiparous and multiparous cows. Median 
(range) for BCSratio were 0.91 (0.61-1.00) and 0.87 (0.53‑1.00) for primiparous and 
multiparous cows, respectively. Predicted probabilities for PAI1 for low, medium, and 
high BCSratio categories were 34.1%, 38.2%, and 38.3% in primiparous and 18.2%, 
24.3%, and 25.2% in multiparous cows, respectively. The logistic regression analyses 
identified significant associations between BCSratio and PAI1, where cows with greater 
BCSratio values were more likely to conceive at AI1. The analyses indicated that the 
odds (95% CI) of PAI1 increased by 2.47 (1.25‑4.91; P = 0.009) and by 3.22 (1.48-
7.06; P = 0.003) for each 0.5-unit increment in BCSratio in primiparous and multiparous 
cows, respectively. Overall, the magnitude of the reduction between BCS at calving 
and nadir BCS had a significant impact on pregnancy at first artificial insemination. 

Keywords: Body condition, automated, nadir, fertility.
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The change from late gestation to early lactation is accompanied by remarkable 
metabolic and endocrine adjustments in the dairy cow (Gross et al., 2011). As this 
transition is characterized by a reduction in dry matter intake associated with an 
increased demand for nutrients to support the initiating lactation, cows experience a 
typical negative energy balance (NEB) during the peripartum period. Fat and labile 
protein mobilization from body energy reserves to match the increased energetic 
demands results in reductions in subcutaneous fat which can be assessed by body 
condition scoring (BCS) (Lean et al., 2013; Roche et al., 2009). 

In practical terms, dairies watch for body condition to monitor cows’ energy status 
and energy balance. Nonetheless, only one third of the US dairy farms implemented 
formal BCS into their management practices (Hady et al., 1994; Bewley et al., 2010), 
likely due to the time consuming and subjective nature of visual or tactile assessment 
(Edmondson et al., 1989; Leroy et al., 2005). 

The advent of automated body condition scoring systems has allowed for the use of 
data originated at multiple and precise time points, with scores that are not affected 
by inter and intra evaluator variation (Borchers and Bewley, 2015).

Previous research has identified the impact of inadequate energy status and energy 
balance on cow fertility (Carvalho et al.; 2014; Roche et al., 2009; Barletta et al., 
2017). Nonetheless, these studies were completed considering visual body condition 
evaluation at specific time points, which makes it difficult an evaluation of the magnitude 
and timing of the largest reduction in BCS during early lactation. Availability of daily 
scores originated from automated camera systems provides opportunity for precise 
assessment of the impact of BCS nadir on subsequent cow performance.

We hypothesized that the magnitude of the reduction between BCS at calving and 
nadir BCS would have a significant impact on< pregnancy at first artificial insemination. 
Therefore, the objective of this study was to evaluate the effect of the decrease in BCS 
from calving to nadir BCS before first artificial insemination (AI1) on pregnancy per 
AI1 (PAI1) in Holstein cows.  

This retrospective observational study included information collected from 
6,100 lactations (primiparous = 3,683; multiparous = 2,417) starting between April 2019 
and March 2021 in a commercial dairy operation located in Colorado, USA. Cows were 
maintained in a cross ventilated barn, milked 3X in a 90 units rotary parlor, and subject 
to first AI at about 80 DIM (primiparous) and 60 DIM (multiparous), following a Double 
OvSynch protocol. Pregnancy diagnosis was performed via transrectal ultrasonography 
on d 32+3 after AI and reconfirmed at d 80+3 of gestation. Cows determined non 
pregnant were administered prostaglandin F2α if a corpus luteum was visible and were 
submitted for AI based on estrus detection using the DeLaval activity meter system 
(DelPro Farm Manager software DeLaval International AB, Tumba, Sweden).

Data collection started at dry-off (multiparous) or at calving (primiparous) and continued 
until the AI resulting in pregnancy or culling. Cow demographic, reproductive, and health 
data were extracted from on-farm software (Dairy Comp 305; Valley Ag Software, 
Tulare, CA). Daily milk yield and BCS were extracted from DelPro Farm Manager 
software. The dataset included cow ID, date of calving, lactation number, calving‑related 
and disease events, breeding dates, pregnancy diagnosis outcomes, daily milk yield 
for the first 60 DIM, and daily BCS.   
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Scores were generated by an automatic BCS system using DeLaval BCS cameras 
(DeLaval International AB, Tumba, Sweden) previously validated by Mullins et al. (2019) 
that were mounted on the sorting-gate at each exit (n = 2) of the milking parlor. As the 
cow passed under the mounted camera, a continuous video (30 FPS, 32,000 captured 
reference points) was taken and a 3D image from the video was automatically created 
and saved by the BCS camera software (Mullins et al., 2019; Pinedo et al., 2022). In 
a secondary step, the saved 3D images were processed through an algorithm and 
analyzed to locate the key physical characteristics (pins, tail head ligaments, sacral 
ligaments, short ribs, and hooks) of the cow to calculate the automated BCS, viewable in 
DelPro Farm Manager. The proprietary algorithm used the BCS scoring scale proposed 
by earlier studies, modified to report BCS in 0.1-point increments (Ferguson et al., 1994). 

All automated BCS data were recorded in and downloaded from DelPro Farm Manager 
and scores generated by BCS cameras at calving (BCScalv) and nadir (BCSnadir) were 
selected to calculate the ratio BCS at nadir/BCS at calving (BCSratio). The BCSratio 
is a representation of the BCS change from calving to nadir, where greater BCS loss 
results in smaller values for the ratio. 

Calving-related events and disease events were obtained from farm records stored 
in on-farm software. Only health events diagnosed before or at the day of AI1 
were considered in the analyses. Parity was created as a binary variable including 
primiparous (lactation number =1) and multiparous (lactation number >2) cows. Calvings 
were grouped by season (spring, summer, fall, or winter). Finally, a milk yield category 
was added as a covariable in the models using the quartile distribution of the average 
daily milk yield in the first 60 DIM (M60) obtained from DelPro Farm Manager. 

All the analyses were performed separately for primiparous and multiparous cows. 
Descriptive time-to-event analysis for pregnancy was performed using PROC LIFETEST 
in SAS 9.4 (SAS institute Inc., Cary, NC).

Initial univariable models using only BCSratio as explanatory variable were followed 
by multivariable models that considered calving season, occurrence of disease up to 
AI1, and milk yield up to 60 DIM as covariables. Descriptive statistics were calculated 
using the PROC UNIVARIATE. Least square means for BCS and for days to AI1 by 
parity category were calculated and compared using ANOVA (PROC GLM). 

Odds ratios (OR) and predicted probabilities for pregnancy at AI1 were estimated for 
the explanatory variables of interest using PROC GLIMMIX.  For all outcome variables, 
significant predictors were selected at P-value <0.05; interaction terms and controlling 
variables remained in the models at P-value <0.10. 

The analysis included 6,100 lactations (primiparous = 3,683; multiparous = 2,417). 
Overall, distribution of calvings across seasons were spring 15.9%, summer 36.2 %, 
fall 27.8%, and winter 20.1%. Average milk yield for the first 60 DIM was 30.4 (0.07) kg 
and 45.3 (0.06) kg for primiparous and multiparous cows, respectively.

Median time from calving to nadir were 51 d and 59 d for primiparous and multiparous 
cows, respectively, while average BCS change from calving to nadir in primiparous 
and multiparous cows were -0.22 and -0.35 (Table 1). Median (range) for BCSratio 
were 0.91 (0.61-1.00) and 0.87 (0.53-1.00) for primiparous and multiparous cows, 
respectively. These values agree with a recent report that indicated that days to nadir 
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were 38 d and 54 d in primiparous and multiparous cows housed in a large commercial 
dairy farm in Indiana (Truman et al., 2022). In the same study, primiparous cows lost 
0.14 BCS points, while multiparous cows lost 0.30 points from calving to nadir BCS. 

Mean (SD) DIM to AI1 for primiparous and multiparous cows were 83.3 (11.5) d and 
63.4 (11.5) d (P <0.001) and pregnancy per AI1 was 33.9% (primiparous = 42.2%; 
multiparous = 28.1%; P <0.001). Predicted probabilities for PAI1 for low, medium, and 
high BCSratio categories were 34.1%, 38.2%, and 38.3% in primiparous and 18.2%, 
24.3%, and 25.2% in multiparous cows, respectively. 

Data for this study originated from an automated BCS system, which allowed for the 
identification of the BCS nadir through daily measurements. Thus, the system provides 
the exact magnitude of the BCS reduction during early lactation. The nadir calving ratio 
is a representation of this BCS change, where smaller values indicate more severe 
BCS loss. 

The logistic regression analyses identified significant associations between BCSratio 
and PAI1. As expected, cows with greater BCSratio values were more likely to 
conceive at AI1. The analyses indicated that the odds (95% CI) of PAI1 increased 
by 2.47 (1.25‑4.91; P = 0.009) and by 3.22 (1.48-7.06; P = 0.003) for each 0.5-unit 
increment in BCSratio in primiparous and multiparous cows, respectively. 

Previous studies have reported the associations among BCS variables and multiple 
reproductive variables (Roche et al., 2007; Carvalho et al., 2014; Chebel et al., 2018). 
As reviewed by Roche et al. (2009), most of the reports studying the physiological 
effects of energy status and energy balance on fertility suggest a positive association 
between an earlier achievement of pregnancy and increased BCS and reduced BCS 
loss during early lactation. The results from the current study align with those reported 
recently by our group in a similar analysis where cows with large loss in BCS between 
calving to 21 DIM, 56 DIM, and AI1 had lesser odds of P/AI1 compared with other 
categories of ÄBCS within the same time period (Pinedo et al., 2022). The strength 
of our study is the availability of daily BCS for a detailed description of the BCS drop 
from calving to nadir. To our knowledge, this is the first study testing the effects of BCS 
nadir on pregnancy outcomes in a large population of dairy cows. In primiparous cows, 
insemination started on average 30 days after nadir, at a time where we expect their 
energy level to be more in balance. In contrast, inseminations for multiparous cows 
started on average at the same time as they reached nadir. This could be an important 
factor to explain the lower achieved P/AI1 in multiparous cows. Further studies should 
investigate cow and parity specific best breeding windows based on BCS profiles.

The reasons for the reduced fertility in cows losing BCS are not fully understood. 
Nonetheless, the follicular/oocyte quality could be affected by suboptimal energy status 
during the early postpartum, impairing subsequent fertility in lactating dairy cows (Britt, 

1 
 

Table 1. Descriptive statistics for body condition scores, days in milk at nadir, and 
average milk yield in the first 60 DIM. Unless stated, least square means (SE) are 
presented. 
 

Parameter Primiparous  Multiparous 
BCS at calving 3.38 (0.009) 3.34 (0.009) 
BCS at nadir 3.15 (0.009) 2.99 (0.009) 
BCS change -0.22 -0.35 
DIM at nadir (d) 51 (0.18) 59 (0.21) 
BCSratio (median [range])1 0.91 (0.61-1.00)  0.87 (0.53-1.00)  
Milk yield (average 60 DIM; kg) 30.4 (0.07) 45.3 (0.06) 

1 BCSratio = Calculated as BCS at nadir/BCS at calving. 
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1992). In addition, changes in hormone levels that regulate gene expression and the 
secretion of proteins by the endometrium, could affect implantation or pregnancy 
recognition (Beam and Butler, 1999). 

 

Overall, the magnitude of the reduction between BCS at calving and nadir BCS, 
analysed here as BCSratio, had a significant impact on pregnancy at first artificial 
insemination. Larger reductions in BCS were associated with lower likelihood of 
pregnancy, with a more pronounced effect in multiparous than primiparous cows. 

Automatic BCS is a useful tool to monitor and manage energy balance. Individual 
cow or group BCS profiles should be considered to determine the onset of breeding 
windows. The implications for fertility management deserve further exploration.
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Mastitis is the most frequent udder disease in dairy cows. It causes huge economic 
losses, due to less milk production, less milk quality, increasing of drugs usage and, 
in most severe cases, early culling.

A healthy herd is a fundamental goal not only for animal welfare but also for the 
environment. Mastitis reduces herd efficiency by the increasing of environmental impact 
of milk production. In fact, it was calculated that a sick cow produces 6.3 % CO2 eq./ 
kg milk more than a healthy one.

To reach efficiency goals, Precision Livestock Farming can give an important 
contribution. In compliance with that, MOLOKO (Multiplex phOtonic sensor for 
pLasmonic-based Online detection of contaminants in milK) European funded project 
aims development of a biosensor to improve milk safety and animal health. 

The MOLOKO biosensor working mechanism is based on the optical measurement 
of an inherent physical property change of the environment in the proximity of the 
sensing surface.

Lactoferrin was chosen as a mastitis biomarker due to its antimicrobial activities.  It is 
an iron-binding glycoprotein synthesized by neutrophilic polymorphonuclear leukocytes 
and granular epithelial cells in milk and other exocrine secretions. 

A direct immunoassay for the detection of Lactoferrin was developed in buffer and in 
diluted raw milk using the MOLOKO sensor. The test showed a correct and cross-
correlated recognition of Lactoferrin on suitably functionalized channels; promising 
results were obtained for both buffer (Limit Of Detection ~ 9µg/ml) and diluted raw milk 
(Limit Of Detection ~40µg/ml) providing information regarding levels of Lactoferrin in 
only 14 minutes.

A preliminary validation of the sensor for the detection of Lactoferrin was carried out with 
milk samples collected from two different dairy herds in the north of Italy, respectively 
600 milking cows, with a milking parlour and 100 milking cows with automatic milking 
system.

Samples analysed in the MOLOKO sensor and by certified laboratory were compared 
for the estimation of lactoferrin concentration.  Additionally, known parameters of udder 

Abstract



234

Early mastitis detection by lactoferrin 

Proceedings ICAR Conference 2022 Montreal

infections, such as somatic cells count, differential somatic cells count, and finally 
bacteriologic culture were also determined to better identify true positive.

The preliminary data show that integration of the MOLOKO biosensor on the milking 
systems could be useful to detect daily lactoferrin fluctuations. Combined with other 
sensors, it could provide farmers information about inflammatory events.

Keywords: MOLOKO, biosensor, precision livestock farming, mastitis, lactoferrin.

Mastitis is the most frequent udder disease in dairy cows. It causes huge economic 
losses, due to less milk production, less milk quality, increasing of drugs usage and, 
in most severe cases, early culling (Halasa et al., 2011).

Worldwide, was estimated that mastitis costs between 61€ to 97€ per cow with clinical 
case and between 17€ to 198 € per cow with subclinical one (Hogeveen, 2011).

A healthy herd is a fundamental goal not only for animal welfare but also for the 
environment. Mastitis reduces herd efficiency by the increasing of environmental impact 
of milk production. In fact, it was calculated that a sick cow produces 6.3 % CO2 eq./
kg milk more than a healthy one (Mostert et al, 2019).

To reach efficiency goals, Precision Livestock Farming can give an important 
contribution; indeed, Precision Livestock Farming allows to monitor every animal in 
real-time using sensors that check their health, welfare, production and reproduction 
status (Berckmans, 2017).

In compliance with that, MOLOKO (Multiplex phOtonic sensor for pLasmonic-based 
Online detection of contaminants in milK) European funded project aims development 
of a biosensor to improve milk safety and animal health. 

One of the aspects that MOLOKO biosensor evaluates is mastitis risk; to allow 
early mastitis detection and improve health, productivity, and welfare of dairy cattle, 
understanding immune factors and mechanisms involved in the mammary gland 
defence against infection represents a fundamental task (Chaneton et al., 2013).

In the bovine mammary gland, the viable leukocytes offer some degree of cellular 
protection against microbial invasion through their ability to recognise microorganisms 
and induce a rapid inflammatory response in an attempt to resolve the intra mammary 
infection immediately (Alnakip et al.,2014). 

Lactoferrin (LF) is an iron-binding glycoprotein, found in milk and other exocrine 
secretions which has antimicrobial/antiviral activities, immunomodulatory activity 
and antioxidant activity (Wakabayashi et al., 2006); LF is synthesized by neutrophilic 
polymorphonuclear leukocytes that are the first recruited immune cell to sites of infection 
(Alnakip et al., 2014), (Figure 1).

Furthermore, it has been demonstrated that LF concentration changes according to 
stage of lactation, parity and presence of pathogen, in fact it is significantly higher in 
cows with subclinical mastitis than healthy ones (Hagiwara et al., 2003).

For these reasons Lactoferrin was chosen as a MOLOKO mastitis biomarker.

The aim of this study was to assess MOLOKO biosensor for LF detection in raw cow 
milk and compare it, as a mastitis biomarker, with a gold standard LF detection.

Introduction 
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MOLOKO is a European Horizon 2020 funded project, comprising 12 partners from 
across Europe, with the aim to optimise production and safety throughout the milk supply 
chain through the development of a fast and cheap biosensor; its working mechanism 
is based on the optical measurement of an inherent physical property change of the 
environment in the proximity of the sensing surface (Figure 2).

Figure 1.  Udder immunologic response after infection (Alnakip et 
al., 2014).

Material and 
methods

Figure 2. Bottom side of the photonic module. Prosa et al. (2021), Organic Light-Emitting 
transistor in a Smart-Integrated system for Plasmonic-Based sensing.

 

 

MOLOKO partners have decided to research both potential contaminants in milk (e.g. 
antibiotics, mycotoxins, bacterial toxins), and at the same time create a diagnostic 
tool useful for the reduction of antibiotics prescriptions, responding to the concerns 
of WHO and European Commission regarding overuse of antibiotics and subsequent 
drug resistance.

A direct immunoassay for the detection of Lactoferrin was developed in buffer and in 
diluted raw milk using the MOLOKO sensor. 
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Figure 3. Sensorgram of the interaction of Lactoferrin at 100 µg/ml in buffer.

 

The test showed a correct and cross-correlated recognition of Lactoferrin on suitably 
functionalized channels; promising results were obtained for both buffer (Limit Of 
Detection ~ 9µg/ml) and diluted raw milk (Limit Of Detection ~40µg/ml) providing 
information regarding levels of Lactoferrin in only 14 minutes.

Individual milk samples were collected from 2 dairy herds in the North of Italy, from 
January 2022 to March 2022; these herds were very different: they had respectively 
600 milking cows, with a milking parlour and 100 milking cows with automatic milking 
system.

Cows were selected randomly according to all factors can influence LF concentration, 
such as stage of lactation, daily milk production, SCC, and parity; all this information, 
at the beginning of sampling were recorded. 

Milk samples were collected in 2 refrigerated aliquots, first one was used for MOLOKO 
biosensor analysis and the second one was delivered to certified laboratory.

Before analysis with MOLOKO biosensor, samples preparation was needed; milk 
samples were diluted 1:100 and were filtered twice, first one with 0.45 µm filter and 
second one with 0.2 µm filter.

ELISA test was performed as a gold standard by certified laboratory in the north of 
Italy; kit used was “5091LFER- EuroProxima Lactoferrin: lactoferrin in various matrix”.

After analysis the colour intensity of the samples were read automatically and the 
concentration of lactoferrin were calculated.

Additionally, known parameters of udder infections, such as somatic cells count, 
differential somatic cells count, and finally bacteriologic culture were also determined 
by certified laboratory and other partner of MOLOKO Project.

Preliminary analyses were made both in buffer and milk; after this analysis, we could 
observe a clear signal of 0.014% in the specific channel for the detection of lactoferrin 
in buffer (Figure 3) which indicated that the OPM was responding well to the detection 
of lactoferrin. 

Results and 
discussion 
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Figure 4. Sensorgram of the interaction of milk sample diluted 100 times.

 

 

In the sensorgram for the milk samples diluted 100 times (Figure 4) and after 
dissociation (green region), we did not observe an increasement in the signal respect 
to the baseline. That indicates that the concentration of Lactoferrin in those samples is 
below the limit of detection of this OPM (approximately 0.001% which would correspond 
to 10 µg/ml of Lactoferrin in buffer and 1000 µg/ml in milk sample). 

However, we can say that qualitatively the concentration of Lactoferrin in milk samples 
was lower than 1000 µg/ml, according to ELISA test the level was 361 µg/ml.

Kutila T. (2004) have reviewed sundry studies and have reported main results about 
milk LF concentration in healthy and mastitic cows:

•	 Lactating cow: 20-35 µg /ml.

•	 Cow with subclinical mastitis: 20-120 µg /ml.

•	 Cow with clinical mastitis: 20-230 µg /ml.

With data collected from the sampling, further assessment will help in confirming the 
given threshold especially due to LF influence by parities and different stage of lactation 
(Hagiwara et al., 2003), also bacterial presence will be assessed.

The preliminary data showed that LF is correctly recognized by MOLOKO biosensor; 
for this reason, its integration on the milking systems could be useful to detect 
daily lactoferrin fluctuations. Combined with other sensors, it could provide farmers 
information about inflammatory events, furthermore, another fundamental goal it could 
be define a more accurate LF thresholds to distinguish clinical mastitis from subclinical 
ones and effectiveness at drying off.

However, more study is needed to define a sample preparation that is consistent with 
lactoferrin level in raw milk.

Conclusion
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Precision livestock management has become an integral part of agriculture and 
dairy farms are increasingly using precision technologies such as sensor systems 
for herd health monitoring. Various companies exist, offering different sensors, 
e.g.  accelerometers in collars or boli measuring cow activity and rumination, for 
different purposes such as fertility, health monitoring or feeding management. The 
D4Dairy project aimed, amongst others, to investigate the potential of sensor data and 
other farm and cow-specific data for disease prediction and genetic improvement of 
metabolic, udder and claw health. Results should lay a foundation for herd management 
tools and genetic health indices, which are expected to work across farms and sensor 
systems. Prior to any application, validation of sensor measurements is necessary. 
Some companies validated their sensor technologies in scientific studies by comparing 
sensor measurements (e.g., rumination time, duration of lying bouts) to a gold 
standard such as direct or video behavioral observations. Another aspect comprises 
validation of changes or patterns in sensor variables for a desired outcome such as 
heat or health alarms. Furthermore, for the implementation of monitoring of any kind, 
reliability of measurements is another crucial aspect. Erroneous measurements due to 
hardware or software malfunctioning have to be identified correctly and outliers have 
to be distinguished from true deviations. The latter is even more difficult for sensor 
measurements without possibilities for a plausibility check. Activity indices or other 
dimensionless sensor outputs lack established reference values and may differ even 
between animals equipped with the same sensor type whereas plausibility of rumen 
temperature or milk yield can also be assessed based on empirical knowledge. These 
issues had and partly still have to be overcome in the D4Dairy project and all projects 
with similar aims. In our contribution we want to present our approaches to sensor 
data validation, the problems we encountered and how we dealt with them including 
general recommendations for future studies in this area.

Technologies have advanced on dairy farms during the last decades, which has 
released a potential for precision livestock farming. One of these advances is sensor 
technology for dairy cows for fertility and herd health management. Various technologies 
exist measuring for example activity, rumination, or reticular temperature to identify 
cows in heat for insemination, cows, which are about to give birth or send health 
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alarms. These notifications are based on continuous recording and evaluation of these 
parameters based on changes in activity, rumination, or temperature patterns in the 
individual animal. Sensors recording these data are administered to the animal using 
for example collars, nosebands, foot bands, or rumen boluses. Crucial, of course, is 
that the sensor device is linked to the individual animal by a unique ID. 

Many manufacturers already offer products using sensor technology for detecting 
cows in heat or at the onset of calving or cows, which may need medical treatment. 
However, sensor data is often very noisy and before these technologies yield reliable 
results it is important to clean and validate the (raw) data. There are different ways to 
approach sensor data validation, depending very much on the purpose and its area 
of use. The most obvious and sound approach is the comparison to a gold standard 
such as behavioral observations to assess the sensor’s precision (Grinter et al., 2019). 
Due to the high time expenditure of behavioral observations other approaches relied 
on the comparison against other, already validated devices (Elischer et al, 2013) or 
the agreement between two devices on the same animal (Kok et al, 2015). Stygar et 
al. (2021) reviewed if and how various sensor systems offered on the market have 
been validated. 

Aside from the validation of sensor technology for the target customers, these devices 
also offer a great opportunity to be used for research or other fields of application such as 
phenotyping for routine genetic evaluation or the development of new decision support 
tools for farmers. However, it is crucial for any user of the sensor data to know if and 
how data from these sensors have been validated and how much the data has been 
pre-processed prior to provision. Commonly, sensor systems available on the market 
are validated for one or a few specific purposes. Thus, data processing and software 
algorithms may emphasize some behaviors more than others to generate the most 
reliable alarms, for example emphasizing mounting activity for heat detection (Elischer 
et al., 2013). Depending on the use of these data for research or other purposes it may 
be necessary to additionally validate the sensor data or algorithms. 

One of the aims of the D4Dairy project (https://d4dairy.com/) was to investigate the 
potential of sensor derived data and their integration with other farm data, such as 
veterinary records and diagnoses or data from automatic milking systems (AMS) for 
disease prediction and genetic improvement of metabolic, udder and claw health. For 
this purpose, farms already using sensor technology were motivated to participate in data 
collection. The sensor systems used on these farms were the rumen bolus by smaXtec 
(smaXtec animal care GmbH; 25 farms), the Lely T4C system (Lely International N.V., 
35 farms), the SenseHubTM Dairy system (Allflex Livestock Intelligence, MSD Animal 
Health, 10 farms), the DelProTM Farm Manager system by DeLaval (14 farms), and 
CowScout and Rescounter by GEA (9 farms). Additional information was derived from 
milking systems, veterinary records and diagnoses, national performance recordings, 
breeding information (e.g., genomic data, estimated breeding values), farm records 
and information on the operational structures on the farms, management information, 
climate sensor systems and weather stations, claw trimmings, rapid blood and milk 
tests for ketosis, and BCS and lameness recordings. Results should lay a foundation for 
herd management tools and genetic health indices, which are expected to work across 
farms and sensor systems. However, prior to any further analysis, sensor data had to 
be inspected and evaluated carefully so results would not be biased by erroneous data 
due to sensor malfunctioning or measurement errors. In this paper we describe how 
we approached data validation for the sensor systems by smaXtec, Lely, and Allflex 
as well as data from AMS and draw conclusions for automatization of data cleaning 
pipelines for future applications. 

https://d4dairy.com/
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Sensor data were collected between January 2019 and August 2021 on farms with 
smaXtec sensors, between January 2020 and March 2021 on farms with the system by 
Lely and between January 2020 and May 2021 on farms with the SenseHubTM sensor 
system. The smaXtec bolus measured activity and temperature in the cow’s reticulum 
and information was read from the sensors in intervals of ten minutes. The activity data 
was provided as a dimensionless number prior to any handling by the manufacturer 
whereas temperature was available in a raw format as well as after correction for 
temperature drops caused by drinking, which was further used for analysis. The other 
two sensor systems measured activity and rumination and were provided in a more 
aggregated format hourly (Allflex, Lely) or every two hours (Lely). Whereas Lely only 
provided one (dimensionless) number for activity, the data from the Allflex system was 
available as minutes of activity per hour for different activity levels (resting, medium 
activity, or high activity) and as an index called ‘activity trend’. Rumination was either 
provided as minutes during the last 24 hours (Lely) or minutes per hour (Allflex). 

Furthermore, data of daily milkings was provided by the Austrian central cattle database 
(Rinderdatenverbund – RDV) for single milkings as well as aggregated over 24 hours 
over the respective time period. 

Outliers deviate from the majority of a sample; however, they are difficult to identify 
in high dimensional data (Paulheim and Meusel, 2015) and it is challenging to clearly 
distinguish outliers from extreme deviations, which may even be of particular interest 
for a research question. For the smaXtec data set different approaches for outlier 
detection were taken up. The first one applied Isolation Forest, an unsupervised 
machine learning approach for outlier detection building on the co-dependency of data 
quality and model robustness (Papst et al., 2021): outliers can be identified based on 
an Isolation Forest Score derived from Isolation Trees, which are created during model 
training. This score indicates how likely it is for a data point to be an outlier (Papst et 
al., 2021). The second approach used classical plausibility checks based on domain 
expert knowledge and basic statistical approaches to data cleaning. This comprised 
the exclusion of duplicates and missing values as well as potential measurement errors 
with measurements occurring multiple times within the regular time window of data 
retrieval or where time to previous and following measurement exceeded the regular 
frequency. Whereas further plausibility checks of maximum and minimum values in the 
data were somewhat possible for temperature values using a priori knowledge on body 
temperature of cattle, this was not the case for the arbitrary activity value. Temperature 
values in the data set ranged from -42.8°C to 42.8°C. As negative temperature values 
are a physiological impossibility in warm-blooded animals this clearly indicated faulty 
data. However, defining a clear cut-off value for plausible temperature values was not 
straightforward and thus it was decided to use maximum deviation of three standard 
deviations from the overall temperature mean as a threshold. This yielded a plausible 
temperature spectrum between 36.6°C and 42.8°C for the whole data set (Figure 1). 

As already mentioned before, there was no reference to assess plausibility of activity 
values and thus these were validated based on the associated temperature values. 
Additionally, if activity values were zero during at least twelve in 24 hours, these days 
were excluded because the sensor was probably not yet administered to the animals. 
All in all, approximately 5% of the smaXtec sensor data were discarded based on 
these decision criteria. 

Sensor data by Lely and Allflex have been pretreated more intensively prior to provision 
and thus it was not known if and based on which criteria data have already been 
removed or altered beforehand. Although the SenseHubTM system also provided an 
arbitrary activity index, all other parameters on activity and rumination were available 
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as minutes of this behavior per hour. Thus, if adding up all sensor variables yielded 
60 minutes of behavior in one hour, data were considered correct. Furthermore, data 
were discarded if daily sums for rumination, eating and activity were zero for at least 
24 hours suggesting that sensors were not administered, lost, or cows were removed 
from the herd and the sensor was not deactivated. The first day after sensor installation 
was also removed from the data set.  

Lely sensor data either provided activity and rumination data in two-hour intervals and 
eating and rumination data hourly, respectively. Whereas rumination and eating were 
indicated in minutes of the last 24 hours, activity was again provided as dimensionless 
number for each two-hour interval. According to informations from the manufacturer 
sensors needed seven days to build a history for the animal and to reliably generate 
heat alarms. Thus, the first seven days of data after sensor installation were discarded. 
Due to the aggregation of rumination and eating time it was not easy to identify periods 
of potential sensor malfunctioning shorter than 24 hours. Thus, it was decided to remove 
data 24 hours before and after records indicating less than 10 minutes of ruminating 
or eating, respectively. This resulted in ranges of 10 to 893 minutes and 10 to 808 
minutes for rumination and eating time, respectively. Furthermore, days with less than 
11 and 22 measurements per day, respectively, were also removed from the data to 
avoid bias when performing further aggregation steps. Finally, four percent of the data 
had to be discarded based on these criteria.  

Last but not least, data retrieved from AMS were validated and potential outliers 
were flagged including the reason. Criteria for outlier flags were the first milking of 
the lactation, milking intervals lower than 60 minutes and exceeding 24 hours, single 
milkings below one kilogram, and an hourly milk yield 50% above the ±10-day average 
(based on Hogeveen et al., 2001). Approximately 2% of the data did not fulfil these 
criteria. Furthermore, AMS data was matched with calving dates retrieved from the 
RDV to cross-validate lactation start and days in milk. 

Using commercially available sensor technology for research purposes enabled 
the inclusion of many farms and data due to their great availability compared to 
customized sensor technology in research settings. However, some limitations have 
to be considered such as the lack of knowledge about data processing by the sensor 
manufacturers prior to data provision due to trade secrets (Papst et al., 2019). Within 
the D4Dairy project this was not an issue because sensor data were not used to 

Figure 1. Reticular temperature per farm before (left side) and after (right side) data cleaning. 
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measure and interpret cow behavior itself. Rather, it was aimed at investigating how 
these sensor data may be helpful for early detection of diseases or their potential as 
auxiliary traits in breeding without interpretation of any physiological or behavioral 
relationships. Still, data had to be inspected and validated regarding measurement 
errors or other sources of faulty data (e.g., cows losing a sensor or devices being 
removed without being deactivated in the system). 

All sensor types in this study were measuring activity, which was represented as a 
number of an undefined unit in all cases. Apart from noticeably long periods of zero 
activity, which indicated that the sensor must have been detached from the animal, 
there was no reference available for plausibility assessment. However, by using a 
priori knowledge about ruminal temperature as well as rumination and feeding time 
in cows, decisions for plausibility of a whole sensor record (activity and temperature 
and rumination or feeding time, respectively) were made based on the plausibility of 
these parameters. 

Only few studies validating sensor devices for recording of rumination or using sensor 
measured rumination for heat, calving or disease detection provide precise information 
on data cleaning and outlier detection for sensor data. Reith et al. (2014) investigated 
heat detection using similar sensor systems for rumination recording like in this study 
and excluded values below 180 minutes and above 660 minutes per day. In her 
review, Beauchemin (2018) concluded that rumination and eating times range between 
2.5 – 10.5 and 2.4 – 8.5 hours per day, respectively. In the present study these time 
ranges comprise more extreme values. However, whereas Reith et al. (2014) were 
interested in heat detection, the studies in D4Dairy aim at disease detection and 
lower rumination or feeding times may indicate a physiological response of unhealthy 
cows. The high values of rumination time observed in this sample may be due to 
the sensor type. According to Beauchemin (2018), substantially higher rumination 
times were recorded by acoustic sensors, which were also used in the present study, 
compared to other technologies. Furthermore, validation studies for acoustic rumination 
recording systems yielded good overall accordance to behavioral observations, but 
varied considerably between individual animals due to e.g., muscle or skin thickness 
or interference by background sounds (Beauchemin, 2018). Thus, this sensor system 
may have limited value for studies aiming at investigating rumination behavior itself, 
whereas disease detection based on the assessment of relative changes of patterns 
in individual animals may benefit a lot from this technology. 

Data validation based on Isolation Forest is a promising method for identifying potential 
outliers. By assigning a score according to the likelihood of a data point to be an 
outlier, the final decision of excluding or including data may still be taken by the user, 
if intended. The main intention of this concept builds on the co-dependency of input 
data quality and model robustness to assess performance of predictive models given 
distribution shifts in incoming data (Papst et al., 2021). Whereas this data-driven 
approach focuses more on an application in the field, the second validation approach 
based on domain expert knowledge may be more suitable for ‘upstream’ research 
work on model formulation and feature definition. 

Data validation and quality assurance is a crucial aspect when analyzing high 
dimensional data such as data from dairy cattle sensor systems. Even more so, steps 
of data cleaning should be comprehensive and made transparent if used for research 
purposes, which is not often the case in scientific literature using sensor data for device 
validation or further detection purposes. Limitations of data, which has been altered 
prior to data provision and which has been validated for specific purposes, should 
be taken into account in particular when using commercially available devices where 
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processing of raw data is not known due to trade secrets. However, when being aware 
of these limitations these data offer a huge potential for the use in research for disease 
detection as well as the development of applications such as decision support tools or 
phenotyping strategies for auxiliary traits. Finally, integrating sensor data with other 
farm- and cow-specific data enables cross-validation between data sets and thus may 
help to additionally refine data for implausible values. 

This work was conducted within the COMET-Project D4Dairy (Digitalization, Data 
integration, Detection and Decision support in Dairying; Project number 872039), which 
is supported by BMK, BMDW and the provinces of Lower Austria and Vienna in the 
framework of COMET – Competence Centers for Excellent Technologies. The Comet 
program is handled by the FFG grant number 872039.
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Digital dermatitis (DD) is a multifactorial infectious disease of the hoof that causes 
inflammation and painful lesions primarily located digitally and on the coronary band. 
Changes in cow behaviors are associated with lameness, yet behavioral data related to 
the onset of DD is limited. The aim of this study was to evaluate behavioral differences 
between cows with healthy feet and cows with DD, as well as changes in behavior 
associated with the onset of DD. Lactating Holstein cows (n = 42) were observed in the 
parlor daily June-July 2020, for visual hoof evaluations. Behavior data was collected 
for 1 wk prior to the onset of DD using CowManager® activity monitoring ear tags that 
recorded activity, eating, and ruminating behaviors, and ear temperature. Data were 
analyzed using mixed model ANOVA and linear regression in SAS. An interaction was 
detected between day relevant to diagnosis of DD (Pre-diagnosis, 0/Day of diagnosis, 
Post-diagnosis) and hoof health (healthy or DD) for active (P < 0.0001) and eating (P 
< 0.0001) behaviors. Cows with DD tended (P = 0.08) to spend 0.07 + 0.01 h/d less 
time active prior to a DD diagnosis. A three-way interaction was observed among day 
relative to the onset of DD, hoof health, and cow lactation number for inactivity (P = 
0.03) and high activity (P = 0.05). Prior to the onset of DD, cows spent 0.03 + 0.01 h/d 
less time highly active (P = 0.04). Ear temperature was associated with day relative 
to the onset of DD and hoof health (P < 0.0001). Prior to the onset of DD, average 
ear temperature increased by 0.16 + 0.03°C (P < 0.0001). In conclusion, cows that 
developed DD altered their behaviors prior to diagnosis. Understanding the progression 
of this disease could promote early treatment and better prognosis.

Keywords: Cow behavior, digital dermatitis, ear tag sensors.

Digital dermatitis (DD) is a multifactorial infectious disease that causes inflammation 
and is classified by painful lesions primarily located digitally and on the coronary 
band of the hoof. DD is typically accompanied by lameness, due to the lesions, along 
with other infectious and non-infectious diseases including: foot rot; sole ulcers; sole 
hemorrhages; and white line disease. Digital Dermatitis severity can be assessed on 
a scale of M0 through M4 stages depending on the size, color, and pain of the lesion 
(Döpfer et al., 1997). The accompanying symptom of digital dermatitis, lameness, 
negatively impacts animal welfare in dairy cattle and leads to economic loss in the 
dairy industry (USD$1.1 billion; Zinicola et al., 2015). DD affects 25% of dairy farms 
and has led to a large economic loss partially due to a decrease in milk production 
(0.6 kg/day; Relun et al., 2013).

Literature surrounding digital dermatitis remains limited and has been encompassed 
under the condition lameness. Lameness impacts changes in animal behavior such 
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as lying time which in turn can cause decreases in the amount of time spent eating 
and feed intake, leading to reductions in milk production (Yunta, 2012; Norring et al., 
2014; Argaez-Rodriguez, 1998). Although behavioral data such as these have been 
studied in lame cows, behavioral data related to the detection of digital dermatitis in 
cows remains very limited. Behavioral monitoring systems range from neck collars to 
detect head movements and assess eating and ruminating time, while ankle bracelets 
can be used to detect pedometry and assess activity time. CowManager® (CowManager 
B.V., Harmelen, Netherlands) is a common behavioral monitoring system on dairy 
farms. CowManager® receives its data using ear tags that record daily behaviors such 
as rumination, eating time, ear temperature, and activity time. These systems have 
been used as reliable methods to compare an individual to the herd population and 
detect lameness as well as other diseases in cattle. 

Currently, the most common method of DD detection is observational through changes 
in gait assessed through locomotion scoring, and physical examination of the hoof 
(Harris-Bridge et al., 2018; Mohamadnia and Khaghani, 2013). Studies using precision 
technology, such as behavioral monitoring systems, to monitor DD has primarily focused 
on detection (the mere presence of DD), yet little has been done to evaluate the onset 
of DD using changes in animal behavior. Due to the progression of the disease, it is 
not usually noticed until it causes pain that results in cattle putting minimal pressure on 
the hoof, leading to lameness. The inability to detect the onset of DD impacts animal 
well-being and is a vital area of research that should be investigated to promote early 
treatment and a better prognosis.

All procedures used in this study were approved by the WSU IACUC (ASAF# 6770). 
The study was conducted from June 2020 to July 2020 at the Washington State 
University Knott Dairy Center (KDC) in Pullman, Washington, USA. The facility houses 
180 lactating Holstein cows in free-stall barns. As a prevention method for DD, an 
acidified copper sulfate and zinc footbath solution was placed at the exit of the milking 
parlor. The footbath solution was replaced twice a week through recommendation of 
a hoof specialist.

The lead researcher for this study was trained by a hoof specialist to evaluate digital 
dermatitis (DD) lesions. All hoof assessments were conducted during morning milkings 
in the milking parlor from 0900 h – 1300 h. Lesion status was categorized as active 
(red and painful with hair on lesion) or degressing (no hair or little hair that lies flat, 
no pain, and scabbing on lesion). Lesion size was categorized as small (< 0.635 cm), 
medium (0.635 cm <x< 3.81 cm), and large (> 3.81 cm) by diameter. Cattle were 
enrolled into the study if they were healthy (no hoof lesions) for at least 7 days before 
the first observation of an active lesion. Each cow with DD was matched with a healthy 
counterpart that had the same lactation number, reproduction status, and similar days in 
milk. The same researcher recorded DD status and size daily until the end of the study.

Each lactating cow at the Knott Dairy Center wore a CowManager® (CowManager 
B.V., Harmelen, Netherlands) ear tag that continuously recorded each cow’s behavior 
24 hours every day throughout the study. The behaviors of interest in this study were 
activity, eating, and lying. Once a cow was enrolled into the study, the behavioral data 
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was matched with a healthy cohort according to lactation number, days in milk (or 
lactation period), and reproductive status. All behavioral data were calculated as the 
proportion of time each cow spent exhibiting each behavior every day.

Prior to statistical analysis, the dependent variables for behavior data were tested for 
normality using the UNIVARIATE procedure of SAS (SAS 9.4, SAS Institute, Cary, 
NC, USA) and no transformation of the data was required. 

The analyses were performed using a mixed model ANOVA in SAS (PROC MIXED; 
SAS 9.4, SAS Institute, Cary, NC, USA) for dependent variables: non-active; active; 
high active; eating; ruminating; and ear temperature. Day in relation to the detection 
of DD was divided between pre-DD, day 0, and post-DD. Statistical significance was 
classified as P d” 0.05. Cows that developed digital dermatitis during the study (n = 
21) were compared to healthy cows (n = 21). 

Cows enrolled into the onset cohort were required to meet the following criteria: > 7 
days healthy and > 2 consecutive days of DD lesion present. Statistical analysis for the 
onset of DD dataset (n = 18) was performed using a regression model in SAS (SAS 
9.4, SAS Institute, Cary, NC, USA) for dependent variables: non-active, active, high 
active, eating, ruminating, and ear temperature. The independent variables used for 
this model included day in relation to detection of DD. Day 0 was relative to first day 
of diagnosis and days prior followed a -1, -2, -3, -4….. day sequence until the first day 
of data collection.

A three-way interaction was detected when testing non-active behavior between hoof 
health (DD or healthy), lactation number, and day relative to diagnosis of DD (P = 0.03; 
Figure 1). 

When comparing cows with DD and healthy cows within day 0 of diagnosis, first lactation 
cows with DD spent 1.76 + 0.74 h/day less time non-active than healthy cows within 
their third or higher lactation (P = 0.02). This was also seen pre-diagnosis of DD where 
healthy cows with three or more lactations exhibited 1.64 + 0.69 h/day more non-active 
behavior compared to first lactation cows with DD (P = 0.02). 

Healthy cows demonstrated changes in non-active behavior within stages of lactation. 
As healthy cows increased in number of lactations, non-active time increased (Figure 
2). This pattern was observed in all three stages relevant to day of diagnosis (pre, 0, 
post). Most significantly, when comparing healthy cows at the beginning of the study 
to the cows closer to the end of the study, those with lower lactations (Lact 1) had 
lower non-active times compared to higher lactation cows (Lact 3+) (P = 0.006). Fewer 
differences were found within each category relevant to day of diagnosis, yet there 
was a trend at the beginning of the study (group pre) between lactation 1 and cows 
with three or more lactations (P = 0.05). 

Cows with DD showed greater variation in non-active behavior when comparing the 
effect of lactation number. Prior to day of diagnosis (pre), cows with higher lactation 
numbers exhibited more non-active behavior. Cows with one lactation had a mean non-
active time of 6.69 + 0.47 h/day while cows with three or more lactations had a mean 
of 7.63 + 0.51 h/day. Upon diagnosis on day 0, cows with two lactations had more time 
spent non-active than those with one lactation (P = 0.04). Cows with two lactations 
spent 1.39 + 0.66 h/day more mean non-active time than those with one lactation (P 
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Figure 1. Mean non-active behavior for cows with DD (n = 21) and healthy (n = 21) cows 
with different lactation numbers and grouped by period relative to diagnosis (pre-diagnosis, 
0/day of diagnosis, and post-diagnosis). * P  = 0.02.

 

 

 
Figure 2. Mean non-active behavior for healthy cows (n=21) and DD cows (n=21) with 
different lactation numbers and grouped by period relative to diagnosis (pre-diagnosis, 0/
day of diagnosis, and post-diagnosis).
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= 0.04). Cows with three or more lactations exhibited 0.96+0.70 h/day less non-active 
behavior than those in lactation two. Similarly, cows with two lactations spent more 
time non-active than cows with one or three or more lactations post-DD diagnosis. 
When comparing non-active behavior among cows with DD, cows with three or more 
lactations pre-diagnosis of DD had less non-active time than post-diagnosis (P = 0.005).

A three-way interaction was detected for high active behavior among hoof health, 
lactation number, and day relative to DD diagnosis (P = 0.05; Figure 3). 

Healthy cows demonstrated changes in high active behavior at different lactation 
numbers. Generally, cows with one lactation had greater than or equal to high-active 
time compared to cows with two and three or more lactations with the highest mean 
of 3.04 + 0.31 h/day. When assessing differences in DD cows pre-diagnosis of DD, 
differences were noticed between cows with one lactation and three or more lactations 
(P = 0.02). When comparing cows within group day 0, DD cows with one lactation had 
an increase in mean high active time of 1.37 + 0.46 h/day compared to cows with three 
or more lactations (P = 0.004). DD cows with one lactation post day of diagnosis also 
showed higher high active time compared to those with two lactations (P = 0.01) and 
three or more lactations (P = 0.03). Not many differences were seen within stages of 
lactation with the exception of DD cows with two lactations. Comparison between 0 
day of diagnosis and post day of diagnosis yielded an increase of high active time by a 
mean of 0.37+0.15 h/day (P = 0.02). Fewer differences were noticed when comparing 
healthy and DD cows within pre-DD, 0, and post-DD. Upon day of diagnosis a significant 
increase in high-active behavior was shown amongst first lactation cows (P = 0.02). 

High active behavior

Figure 3. Mean high active behavior for cows with DD (n = 21) and healthy (n = 21) cows with 
different lactation numbers and grouped by period relative to diagnosis (pre-diagnosis, 0/day 
of diagnosis, and post-diagnosis).
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A two-way interaction among day relevant to diagnosis of DD and hoof health was 
detected for eating behavior (P < 0.0001). Cows that were healthy showed highest 
eating behavior with a mean eating time of 3.59+0.24 h/day. DD cows showed increase 
in eating behavior as progression of DD occurred. At pre-DD, cows had a mean eating 
time of 3.13+0.24 h/day and increased upon day 0 of DD to 3.47+0.25 h/day (P = 0.004). 
Post-DD eating behavior increased by 0.03+0.11 h/day, yet was not significant. When 
comparing DD cows at the beginning of the study within group pre-DD and post-DD, 
eating behavior increased by a mean of 0.37+0.11 h/day (P = 0.0009).

A two-way interaction was observed between hoof health and day relevant to DD 
diagnosis for active behavior (P < 0.0001). Within pre-DD, day 0, and post-DD, no 
significant differences were shown between healthy and DD cows, yet differences 
are seen between day of DD and DD cows. Pre-DD cows showed 0.23+0.08 h/day 
less mean active time than on day 0 (P = 0.004). After initial diagnosis on day 0, DD 
cows slightly increased in mean active time (0.002+0.08 h/day) but was not significant. 
When comparing pre-DD cows to post-DD cows, differences indicated an increase of 
0.23+0.07 h/day (P = 0.003). When comparing healthy and DD cows at different days 
of diagnosis, healthy cows had lower mean active time then DD cows at day 0 of DD. 
Mean active time increased by 0.28+0.12 h/day upon diagnosis of DD (P = 0.03). 
Comparing healthy cows at the beginning of the study and DD cows at the end of the 
study (post-DD) showed an increase of 0.28+0.12 h/day in mean active time (P = 0.02). 

Linear regression model indicated a difference in high active behavior and day relative 
to diagnosis of DD (P = 0.04). When comparing high active behavior, a slight negative 
relationship was determined as cows approached initial day of DD. As cows neared 
the day of DD diagnosis, they spent 2.58 h/day less time being high active. Although 
there was a significant relationship between high active behavior and day, R2 (0.023) 
remained low.

Linear regression model indicated a difference in eating behavior and day relative to 
diagnosis of DD (P = 0.002). As cows neared the day of DD diagnosis, they spent 3.30 
h/day more time eating. When comparing eating behavior, a slight positive correlation 
was determined as cows approached initial day of DD. Although there was a significant 
correlation between eating behavior and day, R2 (0.0496) remained low.

In this study, healthy cows spent an average of 7.25 + 1.48 h/day being non-active, 
which is similar to a study that discovered a range of 7.2 to 9.34 h/day of non-active 
behavior for cows (Bikker et al., 2014). Studies have found healthy cows spend 3.2 
to 5.4 h/day eating which is also similar to those included in this study (3.22 + 1.24 h/
day; Gomez and Cook, 2010). 

Eating behavior

Active behavior

Onset of DD

High active behavior 

Eating behavior

Discussion
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Although ruminating time was not significant in this study, the mean time was within 
the range of those seen in previous studies (8.62 + 1.14 h/day; Reynolds et al., 2019). 
Bikker and colleagues (2014) grouped high-active and active behavior into one behavior 
category and found that cows spend, on average, 3.58 h/day being active, which is 
slightly higher in comparison to the average time spent active for cows in this study 
(2.51 + 0.80 h/day). Interestingly, healthy cows at the beginning of the study (group 
Pre) had lower active time compared to those at the end of the study. This study was 
conducted over the summer and studies have demonstrated that heat stress can 
cause changes in normal behaviors such as activity time (Zahner et al., 2004; Cook 
et al., 2007). The use of stored weather data at three different times points within the 
study demonstrated temperature changes. At the beginning of the study temperatures 
averaged 19°C, increased half way through (24°C) as well as at the end of the study 
(30°C)(Accuweather, n.d). 

The data in this study also showed variation in inactive and high active time at different 
stages of lactation in healthy cows. Cows with higher lactation numbers (3+) displayed 
more inactive behavior relative to day of diagnosis. Overall, cows in lactations 1 and 
2 had more time spent high active compared to those with three or more lactations. 
This behavior is similar to those seen in other articles that tested for the effects of age 
on normal behaviors. Steensels et al. (2012) concluded that lying time was increased 
with age by 29 min/day in cows with three or more lactations compared to those with 
only two lactations. In general, studies determined that animals exhibited less active 
behavior as they become older (Ingram, 2000). In addition, the increase in high-
active time of younger cows may be a response from competition and dominance 
produced from older cows if competing for space. Cows are social animals that will 
create hierarchies dependent on their ability and willingness to establish dominance. 
In cases where space may be limited, cows will compete and may put forth aggressive 
behavior such as bunting and pushing, forcing cows to become more active (Phillips 
and Rind, 2002; Kondo et al., 1989). An indication of weakness in cows will be taken 
as an opportunity to challenge each other and achieve a rise in hierarchy. 

Weaknesses in cattle can include signs of illnesses such as DD and/or calving where 
some studies had noted that cows will be weakened by parturition and sudden change 
of lactation (Lamb, 1976). Cows with DD generally display signs of lameness such as 
changes in gait that may be noticed by other cows. When comparing activity time in 
cows with DD and stages of lactation, first lactation cows seemed to be impacted the 
most upon diagnosis of DD. On Day 0 and Post-DD, lactation 1 cows exhibited less 
inactive and more high-active behavior then lactations 2 or 3+ cows. Previous studies 
noted age as an additional point of weakness as they are generally smaller and more 
timid, making it less likely for them to elicit an aggressive response (Lamb, 1976). 

The current findings of healthy and DD cows indicated an impact of disease on normal 
inactive and eating behaviors. DD cows with three or more lactations showed less 
inactive behavior compared to their healthy counterpart within Day 0 and Post-DD. 
DD lesions have been associated with high amounts of pain which could influence 
these behaviors (Palmer and O’Connel, 2015). Additionally, DD cows showed more 
eating behavior Post-DD compared to healthy counterparts. These findings differ from 
those in previous studies that compared lame cows to healthy ones (Weigele et al., 
2018). Generally, it is expected that cows with pain would increase their inactive time, 
spending more time lying compared to healthy cows, yet some studies correlated an 
increase in active behavior to the increase in shorter strides cows take in order to 
reduce discomfort (Alsaaod et al., 2012). 

Analysis of the onset of DD in cows showed differences in variability of active and 
eating behaviors in the days leading up to the first day of DD diagnosis (Day 0), but 
did not for rumination, inactive, and high-active behaviors. On days prior to DD, cows 
showed more active behavior than on the day of DD diagnosis. This is interesting 
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as it describes a different relationship than the one seen in the previous cohort. The 
relationship seen in these cows is one that is expected as the development of DD 
occurs. Previous studies that assessed behaviors in lame cows noted the decrease in 
active behavior over time (Weigele et al., 2018; Van Nuffel et al., 2015). Mazrier et al. 
(2006) used pedometry in an attempt to detect the onset of lameness in dairy cows and 
found that lame cows showed a reduction in pedometry activity 7 to 10 days prior to 
any clinical signs. Eating behavior maintained a positive correlation as the progression 
of DD occurred in this study. Cows exhibited less eating time compared to those on 
Day 0 of DD, which differs from previous studies of lameness (Weigele et al., 2018). 

The objectives of this study were to determine if precision monitoring systems such 
as behavioral monitoring systems could provide insight into the detection of digital 
dermatitis in dairy cows. Ear monitoring systems provided behavioral data that could 
be used to identify shifts in normal behaviors compared to healthy cows and within the 
onset DD cohort. When comparing DD cows to healthy ones, some behavioral patterns 
differed upon day of diagnosis and post-DD diagnosis. Onset DD cows demonstrated 
changes in behavior prior to initial day of DD. Interestingly, differences in behaviors 
were seen between different lactation numbers of healthy cows and among DD cows. 
Overall, the use of precision technology could be beneficial in the detection of digital 
dermatitis of dairy cows. Future research should assess the behaviors of cows with DD 
in a longer study. Lameness scoring throughout the entire study could help determine 
differences between healthy and DD cows as well as changes in the onset of DD cows. 
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From the nineties, the working groups in charge of small ruminants in ICAR carried out 
surveys on topics related to milk recording and breeding programs in sheep and goats. 
These surveys were manual from 1988 to 2006, before being replaced by a yearly on-
line questionnaire available to accept submission of data from ICAR countries having 
an activity in the field of dairy sheep and goats recording. This paper aims to analyse 
the evolution of milk recording in sheep and goats over the years, using the database 
(developed and maintained within the umbrella of ICAR Secretariat) updated by the 
responses from the on-line surveys. The database includes data on milk recording 
activities (by countries and by breeds), milk recording designs, average milk yield per 
lactation, recording devices, breeding schemes and selection criteria, and molecular 
information in sheep and goats. The valorisation of the on-line survey constitutes one 
of the main terms of reference of the sheep, goats and camelids working group and 
a synthesis is regularly presented at the working groups meeting. An overlook of the 
main evolutions of the milk recording activities in sheep and goats are presented, 
over the last 35 years. Ten to twelve countries filled out the questionnaire in each 
species. The number of animals in official milk recording reached 890,000 ewes and 
410,000 does in 2021. In the large populations of Mediterranean countries, the impact 
of qualitative recording remains low, due to its cost. Use of simplified designs, which 
has been recommended by the working group has strongly increased over the years 
to exceed 90%.

Keywords: Dairy sheep, dairy goats, milk recording, recommendations.

One of the objectives of the terms of reference of the Sheep, Goat and Camelid Working 
Group (SGC-WG) of ICAR is to conduct and report the results of periodic international 
surveys on sheep, goat and camelid performance recording and genetic evaluation. In 
its history, the SGC-WG was created in two steps. The first step was the creation in 
2016 of the sheep, goat and small camelid working group from three existing working 
groups (WG): the Performance Recording of Dairy Sheep WG created in 1988, the 
Goat Performance Recording WG and the Animal Fiber WG (dedicated to mohair goats 
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and small camelids). With this first step, meat sheep and goats were included in the 
scope of the new working group. The second step occurred in 2020 with the inclusion 
of the dromedaries and Bactrian camels.

The first survey in dairy sheep was carried out “manually” in 1988 and was followed by 
several manual surveys every 2 years until 2004. Meanwhile, the same type of survey 
was conducted in goats between the nineties and 2006. From 2006 (dairy sheep) and 
2008 (goat), an on-line database with on-line submission of data was set up at the ICAR 
secretariat level. This survey could be filled in on a yearly basis. Since 2021, a new 
platform for collecting data was implemented, permitting a more friendly submission 
of data and allowing easy extractions and statistics for ICAR members.

So far, no such questionnaire has been implemented neither in meat sheep and goats, 
nor in camelids.

This paper aims at proposing a synthesis of the main results of the database, by giving 
a current vision of the situation of milk recording, while also giving an overview of the 
evolution of milk recording over the last decades in small ruminants.

The ICAR on-line survey follows the same pattern in dairy sheep and goats, with the 
same sections and the same data to submit. The enquiry is divided in 9 sections, 
representing 7 different items.

•	 Basic information on population, milk recording and management of the lactation.

•	 Methods of milk recording.

•	 Type of lactation calculation for milk yield.

•	 Milk yield results.

•	 Optional test for milk composition.

•	 Recording of non-milking traits.

•	 Milk recording equipment used in case of machine milking

•	 Breeding programs using artificial insemination (AI).

•	 Molecular information.

The objective of the survey is to have a state of the art of the situation of milk recording 
in ICAR countries. It also allows to follow the different recommendations of the working 
group (use of simplified recording method, type of lactation calculation) as they are 
mentioned in the ICAR guidelines.

Few countries filled the questionnaire. Over the last 2 years, 7 countries filled out at 
least once in sheep (France, Italy, Spain, Slovak Republic, Czech Republic, Slovenia, 
Croatia) and 9 countries filled out at least once in goat (France, Italy, Spain, Slovak 
Republic, Czech Republic, Slovenia, Croatia, Serbia, Latvia). In addition, between 
10 and 2 years ago, 4 countries submitted data in sheep (Canada, Germany, Greece, 
Portugal) and 4 countries in goat (Canada, Germany, Switzerland, Portugal).

We will specifically focus in this paper on the following topics: sheep and goats in milk 
recording, recorded breeds, recording methods, lactation calculation methods.

On the whole, if we aggregate data from all the countries that have submitted data 
for the last 10 years, 877,896 sheep and 457,324 goats were recorded. 86% and 

The ICAR on-line 
survey
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88% (respectively in sheep and goats) were recorded in the following three countries: 
France, Spain and Italy. The percentage of recorded females is 8.5% in sheep and 
9.6% in goats, which is much less than in dairy cattle. The detail by country is given 
in the table 1 (dairy sheep) and 2 (dairy goat).

The evolution of the number of recorded females varies across countries, as shown in 
the figures 1, 2, 3 and 4. In dairy sheep, the trend is quite stable in France, increasing in 
Spain. In Italy, after a growing period between 1988 and 2012, the number of recorded 
ewes dramatically decreased over the last 10 years and has been divided by 3. The 
evolution is stable in Czech, Slovenia and Croatia, decreasing in Slovak.

In goat, the depth of history is less important: the number of recorded females is 
stable in Spain, Italy, Latvia, Slovak, Czech, slightly decreasing in France, increasing 
in Slovenia, Croatia and Serbia over the last 10-15 years.

Recorded sheep 
and goats in milk 
recording and 
evolution over the 
last decades

 
Table 1. Size of population of dairy sheep, impact of quantitative and qualitative recording in ICAR member 
countries (2020-2021). 
 

   Qualitative recording 

Countries 
Population 

size (*) 

Quantitative 
recording. Number 
of recorded does 

(official milk 
recording) Yes/Not 

Number of recorded 
ewes 

Croatia 95,000 7,235 Yes 7,020 (~100%) 
Czech Republic  1,494 Yes All 
France 1,604,000 334,685 (**) Yes 104,606 (31%) 
Italy 4,851,000 161,711 Yes 10,895 (7%) 
Portugal 263,000 18,052 No - 
Slovak Republic 163,000 6,643 Yes 6,643 (100%) 
Slovenia 5,000 4,624 Yes 4,624 (100%) 
Spain 2,355,000 256,480 Yes ~50% 

(*) Figures from FAOSTAT (2020), 
(**) in addition, 553,836 ewes are recorded with D method (non official milk recording) without qualitative recording, 

Table 2. Size of population of dairy goats, impact of quantitative and qualitative recording in 
ICAR member countries (2020-2021). 
 

   Qualitative recording 

Countries 
Population 

size (*) 

Quantitative recording. 
Number of recorded does 
(official milk recording) Yes/Not 

Type of  
recorded 

does 
Croatia 66,000 3,621 Yes All 
Czech Republic  5,152 Yes All 
France 1,193,000 227,955 Yes All 
Germany  1,517 Yes All 
Italy 826,000 60,326 Yes All 
Latvia 7,900 1,296 Yes All 
Portugal 247,000 7,771 Yes - 
Serbia 119,000 4,846  82% 
Slovak Republic 33,000 346 Yes Parities 1-3 
Slovenia 4,800 2,575 Yes All 
Spain 1,890,000 113,934 Yes - 
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Figure 1. Evolution of recorded dairy sheep in France, Italy and Spain since 1988.

Figure 2. Evolution of recorded goats in France, Italy and Spain since 2008.
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Figure 3. Evolution of recorded dairy sheep in Czech, Slovak, Slovenia, Croatia, Germany since 1988.

Figure 4. Evolution of recorded goats in Czech, Slovak, Slovenia, Croatia, Serbia, Latvia since 2013.
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The description by breeds shows a variety of local breeds: 40 goat and 35 dairy sheep 
breeds have been reported in only one country. Besides all these local breeds, some 
breeds have an international dissemination: in goat, the number of countries in which 
the breed is recorded reached 6 in Alpine, 5 in Saanen, 2 in Murciano-Granadino and 
Malagueña. In sheep, this number is 6 (Lacaune), and 3 (Assaf and East Friesian).

The table 3 shows the number of recorded females in the most important breeds within 
country. Alpine in France is the most recorded goat breed, while Lacaune in France 
is the most recorded dairy sheep breed.

The table 4 describes the recording designs used in the different countries, as well as 
the types of lactation calculation that are set up.

As milk recording is more time-consuming and more expensive in sheep and goat 
than in cattle (size of the flocks/herds, rapid milking routine), the working group has 
recommended to implement simplified method of recording. Current simplified methods 
are AT (alternated one-milking recording), AC (one recorded milking per day) while 
current non simplified method is A4 (or B4) and their derivatives for sampling (AY, 
AZ, CY, CZ are on the basis of A4 methods, but with 1 sample per day). Simplified 
methods are quite generalised in sheep (almost 99% in AT or AC), less used in goat 
(58% in AT or AC). In France, the commercial flocks that are not in selection but want 
to get a service of milk recording practice the B method which is very flexible and does 
not result in EBV calculation. In Italy, in the Sarda breed, the procedure of AC method 
quality control based on one A4 recording along the milking period (as described in 
the ICAR guidelines) started in 2021.

For qualitative recording, while more or less all the goats submitted to milk recording are 
sampled, in dairy sheep the situation is more contrasted. Central Europe and Balkan 
countries (with a small number of recorded ewes) sample all the ewes, while Spain, 
France, Italy only sample a part of the ewes (part of the flocks in qualitative recording; 
part of the ewes within flock, according to some parities). The ratio of ewes submitted 

A great variety of 
local breeds, few 
international breeds

Recording method 
and lactation 
calculation

Recording methods

Table 3. Main recorded breeds in sheep and goat in ICAR member countries (2020-
2021). 
 

Species Breed Country Number of recorded females 
Goat Alpine 

Saanen 
Murciano-Granadino 
Malaguena 
Florida 
Saanen 
Camosciata delle Alpi 

France 
France 
Spain 
Spain 
Spain 
Italy 
Italy 

146,854 
80,750 
67,543 
12,863 
14,676 
11,606 
13,573 

Sheep Lacaune 
Assaf 
Manchega 
Sarda 
Manech tête rousse 
Latxa 
Churra 

France 
Spain 
Spain 
Italy 
France 
Spain 
Spain 

192,900 
141,000 
136,000 
115,500 
84,300 
72,000 
26,000 
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to sampling is 31% in France, 7% in Italy, and is estimated to hardly above 50% in 
Spain. In addition, it exists protocols to sample only a part of the lactation, either the 
most representative part on a genetic point of view (part-lactation sampling within 
AC method) or one out of two successive test-days (case of AT method in Spanish 
Manchega breed).

The definition of the lactation calculation derives from the exploitation of the lactation 
in sheep and goat. There are 2 main systems, according to the presence or absence 
of a suckling period where the lambs/kids remain with their dam and where there is no 
milking or a mixed milking plus suckling. In goats, the main system is without suckling 
period, at least in the international Alpine and Saanen breeds. But the system with 
a suckling period is still important in local, less productive breeds. In sheep, in most 
breeding systems, the lactation is divided into two parts: a suckling period (of about 
1 to 2 months) either without any milking or with a partial milking - once a day for 
example - and a milking-only period after the weaning of the lamb(s).

When there is no suckling period, the lactation is de facto calculated from the lambing: 
this is the Total Milk Yield (TMY). When there is a suckling period, there are two kinds of 
calculation: the Total Milked Milk (TMM) or the Total plus Suckled Milk Milked (TSMM). 
Besides these methods, it is possible to calculate the lactation on the actual lactation 
length or on a reference length.

The table 4 shows the diversity of situation across country and sometimes breeds, 
rendering impossible the comparison of the production of the different breeds. Some 
countries have one type of calculation (case of France or Slovak). Slovak calculates 
on the same way the lactation of sheep and goats, whereas France calculates TMY 

Lactation calculation

Table 4. Recording methods and expression of milk yield in sheep and goat in ICAR member countries (2020-
2021). 
 

   Type of lactation calculation 
Countries Species Recording methods Lactation Production of reference 
Croatia Goat 

Sheep 
AT(most) - A4 
AT(most) – B4 

TSMM,TMM 
TSMM,TMM 

 

Czech Rep. Goat 
Sheep 

AC - E 
AT 

  

France Goat 
 
Sheep 

A4,AY,AZ,CY,CZ – AT 
- AC 

AC - B 

TMY 
 

TMM 

 

Italy Goat 
Sheep 

AT 
AT – AC (Sarda) 

TSMM,TMM 
TSMM,TMM 

TSMM, TMM 
TMM 

Latvia Goat A4 TMY TMY (350) 
Portugal Goat 

Sheep 
A4(most) - AT 
A4(most) - AT 

TMM 
TMM 

TMM (90-120) 
TMM, TMY (150) 

Serbia Goat AT TSMM,TMM,TMY 
 

TSMM,TMM,TMY 
 

Slovak Rep. Goat 
Sheep 

AC 
AC 

TMM 
TMM 

TMM (240) 
TMM (150) 

Slovenia Goat 
Sheep 

AT 
AT 

TSMM,TMM,TMY 
TSMM,TMM,TMY 

 

Spain Goat 
 
 
Sheep 

A4 - AT - AC 
 
 

AT – AC (Latxa-part) 

TMM,TMY,TSMM 
 
 

TMM,TMY,TSMM 
 

TMM (150 or 254), TMY 
(210 or 274), TSMM (210) 
TSMM (116 or 120), TMY 

(163), TMM (120) 
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in goats and TMM in sheep. Spain has a large variety of calculation, across breeds, 
and also within breed.

On-line survey is a relevant tool to follow the state of the art in dairy sheep and goat 
milk recording and related topics. However, countries with a large number of small 
ruminants are missing (Greece, some of Balkan countries). These countries should be 
stimulated and encouraged to submit data to the on-line questionnaire. Milk recording 
in sheep and goat represents a small proportion of the populations: 8.5% in sheep 
and 9.6% in goat. Simplified methods (recording, sampling) are key to increase milk 
recording. Finally, we suggest that such a survey should be proposed in meat sheep/
goat and in wool recording in the future. It might be an objective of the SGC WG.

FAOSTAT, 2020 - http://www.fao.org/faostat/en/#data/QCL

ICAR guidelines – Section 16 Dairy Sheep and Goats. 
https://www.icar.org/Guidelines/16-Dairy-Sheep-and-Goats.pdf

ICAR on-line database for cow, sheep and goat milk recording. 
https://my.icar.org/
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The ICAR Sheep, Goats and Camelids Working Group based on the interests of 
breeders’ organisations has decided to include wool performance recording in its 
guidelines. Therefore, the Working Group has established an Expert Advisory Group with 
the objectives to determine the traits of interest, their collection and genetic evaluation. 
In order to achieve these objectives, representatives of breeding organisations and 
other relevant institutions responsible for sheep recording were asked to fill out an 
on-line survey on sheep wool. The survey includes basic information such as contact 
details of the organisations and specific questions regarding the wool population. 
The latter includes information’s of the breeds involved, the size of the recorded and 
non-recorded population, the number of farms with wool records, information about 
traits recorded, phenotyping methods and protocols, genetic evaluation, and selection 
indices. Additional relevant data on management of animals (e.g., shearing) were also 
collected in the survey. Altogether, seventeen breeding organisations responded to the 
on-line survey. The number of animals included in the wool recording by country ranged 
from 200 to 2,900,000. As expected, the most common breed in wool recording was 
Merino, followed by Dohne Merino and local breeds. The traits involved were fleece 
weight, clean fleece weight or yield, fibre diameter, fibre diameter variation, staple 
length, staple strength, homogeneity of fleece, fibre density, fibre curvature, colour, 
visual appreciation, and additional traits. The most frequently recorded phenotypes were 
fibre diameter, staple length, fleece weight, fibre diameter variation, visual appreciation, 
and colour. The survey results provided useful insight into wool recording and will form 
the basis for guidelines development.

Keywords: sheep, wool recording, on-line survey, traits, genetic evaluation

The ICAR Sheep, Goats and Camelids Working Group (abbreviated SGC WG) has 
developed the guidelines and standards for performance recording in dairy sheep 
and goats and the guidelines for performance recording of growth, meat, reproduction 
and maternal ability in sheep and goats. To date, wool traits have not been included 
in the ICAR guidelines, although wool production is an important sector of genetic 
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improvement and performance recording internationally. Contrary to countries that keep 
mainly dairy or meat sheep and goats (such as most European countries), the cost 
of sheep shearing is higher than the value of the wool, which means a financial loss 
for the breeder. Due to the increasing demand for recommendations on wool, ICAR 
has set itself the goal of expanding its guidelines to include the traits related to wool. 
For that purpose, an Expert Advisory Group was established to define the list of wool 
traits of interest, the methods of their recording, collecting, measuring, assessing, and 
to propose the method and statistical models for genetic evaluation. To achieve these 
objectives, an on-line survey on wool recording has been created. Relevant institutions 
were invited to complete the on-survey during the years 2020 and 2021 in order to collect 
the relevant information worldwide. The aim of this paper was to provide an overview 
of the feedback from the on-survey that will form the basis for recommendations on 
wool recording and genetic improvement of wool traits.

Breeding organisations and other relevant institutions responsible for sheep recording 
were invited to fill out an on-line survey about sheep wool. The survey includes basic 
information about the breeding organisations (name, country, and contact details for 
the organisation’s representative) and specific questions regarding the wool population 
size (total sheep population size, wool sheep population size and number of farms with 
wool performance recording), information regarding wool breeds – the main breed and 
additional breeds if they are included in wool recording (total population size, population 
in wool performance recording, and number of farms with wool performance recording), 
and relevant information about recorded wool traits. The following list of wool traits has 
been proposed for recording: fleece weight, clean fleece weight or yield, fibre diameter, 
fibre diameter variation, staple length, staple strength, homogeneity of fleece, fibre 
density, fibre curvature, colour, other additional traits (such as different kind of visual 
appreciation), and traits requiring a sample of wool. For the latter, the protocol of 
sampling were requested. The following information’s for traits have been collected from 
the survey: recording of the trait (yes/no), who collects the data, method of collecting, 
device for measuring, unit of trait expression, recording age of the animals, minimal/
optimal wool growth period, assessment (subjective or measured), information’s about 
genetic evaluation of the trait (genetic parameters, evaluation method and statistical 
models, inclusion of the trait in the economic index). Additional relevant data on 
management of animals (e.g., shearing) were also collected in the survey. 

The SAS statistical package (SAS Inst. Inc., 2009) was used to analyse the data and 
generate descriptive statistics. 

In total, 17 relevant institutions on wool recording from 14 countries responded to 
the on-line survey (Table 1). Most of institutions (10 of them) answered the survey 
completely, while seven institutions completed partial survey. 

As expected, the largest wool population is coming from Australia, followed by New 
Zealand and South Africa (Table 2). Only a small proportion of these populations 
(between 0.09 and 4%) are under wool performance recording. However, these 
countries have respectable number of farms with performance recording for wool. On 
the other hand, the entire wool population of Portugal is involved in the performance 
recording with a certain number of farms. 

Material and 
methods

Results and 
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Table 1. Survey status by country (and breeding organisation). 
 

Status of survey 
Country Fully 

completed 
Partially 

completed 
Australia  1 
Austria  1 
Bulgaria  1 
Croatia  1 
Czech Republic 1  
Finland 1  
Iceland 1  
Latvia 1  
New Zealand 1 1 
Portugal 1 1 
Slovenia 1  
South Africa 2  
Sweden  1 
Uruguay 1  
All 10 7 

 
 
Table 2. Total size of the wool sheep population, population size, number (N) of wool 
performance-recorded ewes (WPR), proportion (%) of population in WPR and number of 
farms (no.) in WPR. 
 

Country Total size N in WPR1 % in WPR  No of farms in WPR  
Australia 70,000,000 2,900,000 4 222 
Bulgaria 10 2 20 1 
Croatia 42,000 200 0.47 1 
Finland 14,170 1,000 7 10 
Latvia 28,224 5,448 19 49 
New Zealand 27,600,000 20,000 0.7 35 
Portugal 26,232 26,232 100 90 
Slovenia 5,452 150 2.7 2 
South Africa 24,000,000 626,000 3 589 
South Africa 15,000,000 13,550 0.09 65 
Uruguay 6,723,548 25,500 0.4 81 

1WPR = wool performance recording 
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The next part of the survey was related to the breeds having wool performance recording 
(Figure 1) and 11 of the 17 breeding organisations responded. As expected, the most 
common main breed was Merino (36%) followed by Dohne Merino and local breeds. 
There was also a possibility to include additional breeds in the survey (from second 
to fifth breed). Besides specialised wool breeds, some of them belong to the group 
of mountain and lowland breeds. Both, males and females were included in the wool 
sample collection. 

The most common traits for wool performance recording are reported to be fibre 
diameter, staple length, and fleece weight (Figure 2). Beside these, fibre diameter 
variation, visual appreciation, and colour have been traits frequently used in wool 
recording. Less frequent traits were staple strength, fibre density and homogeneity. 
Beside these traits, organisations have the opportunity to provide information about 
additional traits if they were recorded but not included in the given list (five responses). 
On-line survey also offered the possibility to provide information about traits that require 
a wool sample (seven responses).

Respondents were asked about the person who collecting the data, the method and the 
device used for measuring, and the units of trait expression. The results regarding data 
collection are summarised in Figure 3. The farmer was most common person involved 
in data collection, followed by technicians and laboratory staff. Experts were involved 
in the collecting specific traits such as visual appreciation. For traits requiring practical 
knowledge (e.g., fibre curvature, staple strength, fibre density, and homogeneity), data 
collection was performed by technicians. 

Figure 1. Frequency distribution of common breeds under wool performance recording.
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Figure 2. Frequency distribution of traits involved in the wool performance recording.

Figure 3. Persons responsible for data collecting by trait.
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Methods used for recording wool are trait related. According to the respondents, 
some traits are weighed (fleece weight, clean fleece weight), others are either visually 
recorded (colour, fibre density, homogeneity), scored by scale (visual appreciation), 
tested with different methods (atlas or pull test have been used for staple strength 
recording), or measured with special machines, instruments and devices (fibre diameter, 
fibre diameter variation, staple length, and fibre curvature). In the case when traits are 
weighed or measured, the equipment used for this purpose was also specified. The 
units for trait expression (Figure 4) were either kg (fleece weight, clean fleece weight), 
microns (fibre diameter), proportions (clean fleece weight, fibre diameter variation), 
millimetres (staple length), Newtons/ktex (staple strength), scale (homogeneity, fibre 
density, colour, visual appreciation), and degrees/millimetre (fibre curvature). 

Results regarding recording age and minimal/optimal growth period showed wide 
variation depending on trait, breed, and country. Recording age ranged from three (fibre 
curvature) to 28 months (fleece weight and clean fleece weight), while growth period 
ranged from three (fleece weight, fibre diameter) to 18 months (visual appreciation). 

The last part of the survey included information regarding genetic evaluation. In most 
of the responding organisations, breeding values for wool traits have been estimated 
(Figure 5). The exceptions are fibre density and homogeneity. BLUP animal model as 
computation method was considered as being the standard for the genetic evaluations. 
In addition, the BLUP method has been extended to GBLUP by including molecular 
data for genomic evaluation of wool traits in Australia. Proposed traits have been mostly 
included in the economic index. The survey also included additional information on traits 
such as average phenotype, annual genetic trend, and genetic parameters (genetic 
variance and heritabilities) to provide an overview of how heritable these traits are.

Figure 4. Unit of trait expression.
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Additional relevant data on management of animals (e.g., shearing) were also collected 
in the survey. Responses indicate that animals are shared once or twice a year, usually 
in the spring and autumn. The final element of the survey, an open textbox option 
allowed for qualitative feedback that would be useful for completeness of the survey. 
Most respondents chose to tell more about their breeds and related issues.

The results from the on-�line survey offer useful insight in wool recording and 
provide some general considerations, common traits that could be collected and 
recommendations for wool performance recording. They also provide information 
about genetic evaluation as a tool for genetic improvement of wool production traits. 
Furthermore, the survey results will serve as a basis for developing new ICAR guidelines 
for recording wool traits in sheep. 

SAS Inst. Inc. 2009. SAS/STAT® 9.2 User’s Guide, Cary, NC: SAS Institute 
Inc

Figure 5. Estimation of breeding value by trait.
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The aim of the study was to introduce the standard lactation length and standard 
milking length in milk recording of Slovenian dairy sheep and goat breeds in breeding 
programs to achieve better comparability among animals within the same breed in milk 
production traits (total milk yield, total milked milk as well as protein, fat and lactose 
contents). In Slovenia, there are two local dairy sheep breeds, Bovec sheep and Istrian 
Pramenka and an Improved Bovec sheep. There are three dairy goat breeds, a local 
Dreznica goat and two locally adapted breeds, Slovenian Alpine goat and Slovenian 
Saanen goat. According to the recommendations in the ICAR guidelines, every 
approved organisation should define the standard lactation length (and/or standard 
milking length), which is close to the average lactation length (milking length) of the 
considered breed according to the production system. At the beginning, an average 
age at weaning of offspring (beginning of milking) and average milking length (end of 
milking) were calculated. Based on these calculations the standard lactation length 
and standard milking length were defined. Due to two different production systems 
used for Slovenian Alpine and Slovenian Saanen goats, animals of both breeds were 
divided in two subpopulations. In the first one, where kids are early weaned (until the 
5th day of age) it was determined that standard lactation length lasts from the day of 
kidding to 240th day after kidding in both breeds. In the second subpopulation, where 
kids are weaned later than the 5th day of age (late weaning) we defined a standard 
milking length from 40th to 240th day after kidding. In the case of Dreznica goat and in all 
Slovenian dairy sheep breeds early weaning practically does not exist. Consequently, 
only a standard milking length was defined. The standard milking length in Dreznica 
goat, Bovec sheep and Improved Bovec sheep was in the period from 40th to 210th 
day after giving birth, while in the case of Istrian Pramenka from 60th to 210th day after 
lambing. In the future, we will continue with monitoring of total milk yield, total milked 
milk as well as protein, fat and lactose contents produced in the standard lactation 
length and in the standard milking length according to the breeding program of each 
breed and adjust if necessary.

Keywords: Standard lactation length, standard milking length, dairy sheep, dairy goats, 
Slovenia.
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The lactation length is one of the main factors, which affect total milk yield and milk 
composition in dairy cattle, sheep and goats, and it is often used as one of the criteria 
for comparison among animals within the same flock, population or breed. However, 
milk production traits are easier to compare among animals when a milking length is 
of the same length. For this reason, standard lactation length is used in dairy cattle 
breeding for many years and it is accepted worldwide. It lasts from calving to the 305th 
day of lactation in all cattle breeds, while there is no such uniform standard lactation 
length in dairy sheep and dairy goats. However, in several breeding programs around 
the world standard lactation length is used to compare animals within different sheep 
and goat breeds. In the breeding programs for German Alpine goat (Zuchtprogramm 
Bunte Deutsche Edelziege, 2021) and German Saanen goat (Zuchtprogramm 
Weise Deutsche Edelziege, 2021) a standard lactation length lasts 240 days, while 
in the breeding program for the East Friesian sheep in Germany (Zuchtprogramm 
Ostfriesisches Milchschaf, 2021) the dairy traits are recorded in a period of 150 days. In 
the guidelines for the implementation of milk recording in sheep and goats in Austria, a 
standard lactation length is determined as a period from giving birth to the 240th day of 
lactation (LKV Austria, 2022). One of the most important criteria in the implementation 
of standard lactation length is the average lactation length of each breed. Some 
researchers also considered some other criteria such as genetic parameters and 
genetic correlations between milk production traits in the standard lactation and milk 
production traits in the whole lactation. Based on described criteria, Basdagianni et 
al. (2018) determined that standard lactation length in the Chio diary sheep lasts 220 
days or 190 days in ewes in the first lactation, respectively. The implementation of 
standard lactation length is reasonable in the intensive production systems where kids 
and lambs are weaned in the first few days after birth. Consequently, the milking length 
is practically identical to the whole lactation length. On the other hand, in less intensive 
systems, lambs and kids are weaned later, and the milking length is shorter than the 
whole lactation length. In the extensive production systems, the implementation of 
the standard milking length (a period between the weaning of offspring and the end of 
lactation) is more appropriate than the implementation of the standard lactation length.

The aim of the study was to introduce the standard lactation length or standard milking 
length, respectively, in the milk recording of Slovenian dairy sheep and goat breeds 
in the breeding programs to achieve better comparability among animals within the 
same breed in the milk production traits (total milk yield, total milked milk as well as 
protein, fat and lactose contents).

Records were provided by the Slovenian breeding programs for dairy sheep and dairy 
goats collected from the year 2005 to 2019. Data of animal birth date, breed, flock, 
lambing/kidding date, parity, weaning date, date of the end of lactation and records 
of milk recording were obtained from the Central Database for Small Ruminants in 
Slovenia. Only records with the ewes’/does’ lactation length between 0 and 300 days 
and lambs’/kids’ suckling period length between 0 and 100 days were included in the 
analysis. Likewise, ewes and does, which had less than three milk recordings within 
the same lactation, were excluded from the analysis. Sheep flocks with less than 50 
records as well as goat flocks with less than 30 records were excluded as well. After 
the records control, the number of included records was 27,234 for dairy sheep and 
12,289 for dairy goats.

Based on these records, the average age at weaning of offspring (beginning of the 
milking) and the average milking length (end of milking) for each breed were calculated 
according to the ICAR guidelines which recommends that each approved organisation 
should define the standard lactation length (and/or standard milking length) which is 
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close to the average lactation length (average milking length) of the considered breed 
according to the production system (ICAR, 2018). Due to two different production 
systems of Slovenian Alpine goat and Slovenian Saanen goat in Slovenia, animals of 
both breeds were divided into two subpopulations. In the approximately 25% of flocks 
of these two breeds kids are early-weaned (till the 5th day after birth), immediately after 
the end of the colostral phase of suckling. Especially in the case of Slovenian Saanen 
goat, the percentage of flocks where early weaning occurs has increased in the last 
few years. In the first subpopulation, standard lactation lasts from the day of kidding 
to the 240th day after kidding in both breeds. In the second subpopulation, where kids 
are weaned later than the 5th day of age (late weaning), a standard milking length from 
40th to 240th day after kidding were determined. In the case of Dreznica goat and all 
dairy sheep breeds in Slovenia, early weaning is practically not in use. Consequently, 
for these breeds, only a standard milking length was defined. The standard milking 
length in Dreznica goat as well as in Bovec sheep and Improved Bovec sheep was 
agreed in the period from 40th to 210th day after giving birth, while in the case of Istrian 
Pramenka it lasts from 60th to 210th day after lambing.

The total milk yield in the standard lactation length and the total milked milk in the 
standard milking length are calculated from the records obtained in milk recordings 
where daily milk yield is measured with milk meters and a milk sample is taken for 
the determination of protein, fat and lactose contents in the milk of each ewe or doe 
in a flock. The equation 1 is used for the total milk yield and the total milked milk 
estimation based on the daily milk yields from milk recordings and intervals between 
two successive milk recordings:

TMY (TMM) = (I0 * M1 + I1 * (M1 + M2) / 2 + .... In * Mn) / 1000

where:

TMY = total milk yield in the standard lactation length (kg),

TMM = total milked milk in the standard milking length (kg),

I0 = the interval between the beginning of standard lactation/standard milking and the 
first milk recording (days),

M1, M2,… Mn = daily milk yield (g),

I1, I2… = the interval between two successive milk recordings (days),

In = the interval between the last milk recording and the end of the standard lactation 
length/standard milking length (days).

The protein, fat and lactose yields in the standard lactation length or in the standard 
milking length are estimated from the daily milk yields multiplied by the protein, fat and 
lactose contents determined in the milk sample taken at each milk recording divided 
by 100.

The total milk yield in the standard lactation length and the total milked milk in the 
standard milking length are estimated just for ewes and does which comply with the 
following conditions:

•	 an animal had at least three milk recordings per lactation; two of them were within 
the standard lactation length or within standard milking length;

•	 first milk recording must take place within 52 days after the weaning of offspring;

•	 the average interval between two successive milk recordings is within a range 
from 28 to 34 days;
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•	 there is a tolerance of one missed milk recording per lactation as well.

Descriptive statistic for the total milked milk and milk composition of dairy sheep breeds 
in the standard milking length from the year 2015 to 2021 is presented in Table 1. 
Improved Bovec sheep had the highest average total milked milk and the lowest average 
protein and fat contents (191.9 kg, 5.2% and 5.7%), respectively. On the other hand, 
Istrian Pramenka had the lowest average total milked milk and the highest average 
protein and fat contents (99 kg, 5.9% and 7.2%), respectively.

In the Table 2 is descriptive statistics for the total milked milk and milk composition of 
dairy goat breeds in the standard milking length in the years 2015-2021. On average, the 
total milked milk was the highest in Slovenian Saanen goat (376.9 kg) and the lowest in 
Dreznica goat (267.7 kg). On the contrary, the average protein, fat and lactose contents 
were the highest in the milk of Dreznica goat (3.4%, 4.1% and 4.5%), respectively and 
the lowest in the milk of Slovenian Saanen goat (2.9%, 3.0% and 4.2%), respectively.

Descriptive statistic for the total milk yields and milk composition of dairy goat breeds in 
the standard lactation length in the years 2015-2021 is presented in Table 3. Slovenian 
Saanen goat had higher average total milk yield (517.0 kg) and lower average protein 
and lactose contents (2.9% and 4.4%) in comparison with Slovenian Alpine goat 
(511.6 kg, 3.2% and 4.5%), respectively, while the average fat content was the same 
in both breeds (3.2%).

The goal of this study was to define and to introduce the standard lactation length and 
the standard milking length appropriate for each breed of dairy sheep and dairy goats 
in Slovenia. In the estimation of the standard lactation length and standard milking 
length the production system of ewes and does was also considered. Although the 
standard lactation length or standard milking length in sheep and goats is primarily used 
as criteria for comparison among animals within the breed, in some cases animals of 
different breeds could be compared as well. The Bovec sheep is possible to compare 
to the Improved Bovec sheep due to the same standard milking length. However, the 
Improved Bovec sheep is a result of improving Bovec ewes with East Friesian rams. 
A higher total milked milk in the Improved Bovec sheep on average (191.9 kg) was 
expected compared to Bovec sheep (137.7 kg), which means that improving had a 
positive effect on the milk yield. In the same time, the Improved Bovec sheep had lower 
average dry matter content (sum of protein, fat and lactose contents; 15.5%) than Bovec 
sheep (16.3%) which is a consequence of higher milk yield in Improved Bovec sheep. 
Istrian Pramenka had the lowest average total milk yield (99.9 kg) and the highest dry 
matter content (17.6%) in the standard milking length than other two breeds. However, 
the total milked milk of all three breeds could not be compared because the standard 
milking length in Istrian Pramenka is 20 days shorter in comparison with Bovec sheep 
and Improved Bovec sheep.

The subpopulations of Slovenian Saanen goat and Slovenian Alpine goat where kids 
are late-weaned are compared to each other because of the same standard milking 
length. Slovenian Saanen goat had higher total milked milk on average (376.9 kg) than 
Slovenian Alpine goat (323.9 kg). Likewise, Slovenian Saanen goat had lower average 
dry matter content (10.1%) in comparison with Slovenian Alpine goat (10.6%). Dreznica 
goat had 267.1 kg of milk and it had the highest average dry matter content (12.0%) 
in the standard milking length than Slovenian Saanen goat and Slovenian Alpine goat 
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Table 1. Descriptive statistics for the total milked milk and milk composition of 
dairy sheep breeds in the standard milking length from 2015 to 2021. 
 

Breed/ 
Standard milking length Variable N1 Mean SD2 Min Max 

Total milked milk (kg) 8,750 137.7 53.7 12.4 450.7
Protein content (%) 8,672 5.3 0.4 3.3 10.1
Fat content (%) 8,672 6.4 0.8 3.1 13.9

Bovec sheep 
40th to 210th day 

Lactose content (%) 8,672 4.6 0.3 2.3 7.9
Total milked milk (kg) 3,128 191.9 75.1 21.0 514.7
Protein content (%) 3,127 5.2 0.4 3.9 7.8
Fat content (%) 3,127 5.7 0.8 2.8 9.7

Improved Bovec sheep 
40th to 210th day 

Lactose content (%) 3,126 4.6 0.3 2.3 6.9
Total milked milk (kg) 1,972 99.9 31.5 22.3 350.2
Protein content (%) 1,922 5.9 0.5 4.5 8.3
Fat content (%) 1,922 7.2 0.8 3.4 10.8

Istrian Pramenka 
60th to 210th day 

Lactose content (%) 1,922 4.5 0.3 1.9 6.5
1Number of records.  
2SD – Standard Deviation. 
 
 
Table 2. Descriptive statistics for the total milked milk and milk composition of dairy 
goat breeds in the standard milking length from 2015 to 2021. 
 

Breed/ 
Standard milking length Variable N1 Mean SD2 Min Max 

Total milked milk (kg) 1,107 376.9 127.3 51.9 954.4
Protein content (%) 1,107 2.9 0.3 2.2 4.1
Fat content (%) 1,106 3.0 0.6 1.5 5.9

Slovenian Saanen goat 
40th to 240th day 

Lactose content (%) 1,107 4.2 0.2 3.6 4.8
Total milked milk (kg) 2,602 323.9 153.0 12.7 1102.2
Protein content (%) 2,595 3.1 0.3 2.2 5.3
Fat content (%) 2,595 3.2 0.6 1.6 7.4

Slovenian Alpine goat 
40th to 240th day 

Lactose content (%) 2,595 4.3 0.2 3.2 6.6
Total milked milk (kg) 1,972 267.1 129.5 41.6 833.2
Protein content (%) 1,922 3.4 0.3 2.7 5.6
Fat content (%) 1,922 4.1 0.7 2.1 7.5

Dreznica goat 
40th to 210th day 

Lactose content (%) 1,922 4.5 0.2 3.6 7.1
1Number of records.  
2SD – Standard Deviation. 
 
 
Table 3. Descriptive statistics for the total milk yields and milk composition of dairy 
goat breeds in the standard lactation length in the years 2015-2021. 
 

Breed/ 
Standard lactation length Variable N1 Mean SD2 Min Max 

Total milk yield (kg) 1,040 517.0 196.4 66.0 1,385.3
Protein content (%) 1,039 2.9 0.2 2.3 3.9
Fat content (%) 1,039 3.2 0.5 1.8 6.0

Slovenian Saanen goat 
1st to 240th day 

Lactose content (%) 1,039 4.4 0.2 3.7 5.4
Total milk yield (kg) 694 511.6 177.4 76.8 1,219.8
Protein content (%) 694 3.2 0.3 2.4 4.4
Fat content (%) 694 3.2 0.4 1.5 4.5

Slovenian Alpine goat 
1st to 240th day 

Lactose content (%) 694 4.5 0.2 4.0 4.9
1Number of records.  
2SD – Standard Deviation. 
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(subpopulations with late weaning of kids). However, a direct comparison of the total 
milked milk of all three goat breeds is not reasonable, because the standard milking 
length in Dreznica goat lasts 30 days less compared to other two goat breeds.

The total milk yield of Slovenian Saanen goat and Slovenian Alpine goat (subpopulations 
with early-weaned kids) could be compared due to the same standard lactation length. 
Slovenian Saanen goat had a little higher average total milk yield (517.0 kg) and a 
lower average dry matter content (10.5%) than Slovenian Alpine goat (511.6 kg and 
10.9%). The standard lactation length in both breeds lasts from kidding to the 240th 
day of lactation, which is the same as in breeding programs for German Saanen 
goat (Zuchtprogramm Weise Deutsche Edelziege, 2021) and German Alpine goat 
(Zuchtprogramm Bunte Deutsche Edelziege, 2021) in Germany. For this reason, a 
direct comparison of total milk yield in considered Slovenian and German breeds is 
possible. In Slovenian Saanen goat, the average total milk yield in the standard lactation 
length (517.0 kg) was lower in comparison with German Saanen goat (750 – 1,000 kg). 
On the other hand, the protein (2.9%) and fat (3.2%) contents in the milk of Slovenian 
Saanen goat were similar to the milk of German Saanen goat (2.8 - 3.0% protein 
content and 3.2 – 3.5% fat content). In the Slovenian Alpine goat, the average total 
milk yield in the standard lactation length (511.6 kg) was lower in comparison with the 
German Alpine goat (850 – 1,200 kg). Fat content (3.2%) in Slovenian Alpine goat was 
in accordance with the fat content in the milk of German Saanen goat (3.2 – 3.5%), 
while the protein content in the milk of Slovenian Alpine goat (3.2%) is even above 
the protein content in the milk of German Saanen goat (2.8 – 3.0%).

In the year 2022, we have introduced the standard lactation length and standard milking 
length in milk recording of Slovenian dairy sheep and goat breeds in breeding programs 
to achieve better comparability in the milk production traits among animals within the 
same breed. In the future, we will continue with the monitoring of total milk yield and 
total milked milk as well as protein, fat and lactose contents in the standard lactation 
length and standard milking length according to each breed and adjust if necessary.
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The Canadian sheep industry is a relatively small industry and primarily focused on 
meat production. GenOvis is the national genetic evaluation system with close to 200 
participants in 2022 and more than 1 million lamb records. The main purebred breeds 
under genetic selection are the maternal Dorset and Polypay breeds, the prolific 
Romanov and Rideau  Arcott breeds and terminal Suffolk and Hampshire breeds. In 
the past years, genetic gains have been achieved for multiple traits using selection 
indexes. From 2012 to 2021, the largest realized total genetic gains in growth and 
carcass traits were made by Suffolk breed for 50-day weight (+1.18kg), gain from 50 
to 100 days (+2.21kg) and the loin depth (+1.56 mm). In addition, for maternal traits, 
the largest genetic gains have been observed in Polypay breed for maternal 50-day 
weight (+0.84 kg) and in Romanov breed for total weaning weight at later parities 
(+2.55 kg) and total number born at later parities (+0.11 lambs). During the same 
period, the change in inbreeding levels varied from negative in Polypay (-0.2%) to the 
largest positive increase in Dorset (+1.1%). There are many opportunities to accelerate 
these genetic gains. The increase of data collection through multiplier and commercial 
producers, new phenotyping technologies, and integration of genomic information are 
among the most promising developments.  

Keywords: Genetic gain, sheep breeding program, selection traits, inbreeding

The Canadian sheep industry is a relatively small industry compared to chickens, 
pigs or cattle. As for 2019, 827,800 sheep were produced in Canada compared to 
171 398 000 chickens, 14 399 300 pigs and 11 500 000 cattle (Agriculture Canada, 
2021). The Canadian sheep industry is primarily meat focused, but milk and wool are 
also produced. Overall, lamb meat represented 4% of the total retail sales value market 
of Canadian meat sector in 2019 (Agriculture Canada, 2021). Moreover, the Canadian 
lamb industry compound annual growth rate (CAGR) has been increasing of 0.1% from 
2015 to 2019 (Agriculture Canada, 2021). This upward trend is continuing as the CAGR 
from 2019 to 2023 is predicted to increase of 3% (Agriculture Canada, 2021). Canadian 
sheep industry is becoming more and more important and constant efforts must be 
maintained to specialize it. To do so, tools are made available to sheep producers like 
for instance the GenOvis program. The GenOvis program has been created as a mean 
to give an on-farm sheep genetic program for all Canadian users, namely purebred 
sheep breeders, commercial producers, and dairy farmers. This program+ a partnership 
between Centre d’expertise en production ovine du Québec (CEPOQ), Ontario Sheep 

Abstract

Introduction
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Farmers (OSF), Canadian Sheep Breeders Association (CSBA), and the Centre for 
Genetic Improvement of Livestock (CGIL) and counts 199 members divided into 166 
breeders, 15 commercial producers, and 18 dairy producers. The technical support 
is done by CEPOQ whereas the web application and genetic evaluation routines are 
developed and run by CGIL. Two modules are offered which are lamb (meat), since 
2000, and dairy module, since 2014. These modules help sheep farmers to produce 
high quality lambs for consumers, but also gave access to genetic values that enable 
them to improve their ewes milk production and quality. Overall, the program allows 
an effective evaluation of sheep genetic value based on important economic traits as 
expressed by relatives and other animals within breed or crossbreed. 

This paper describes and presents results only about the GenOvis lamb (meat) module. 
A total of 15 traits are recorded in the database from which three groups emerge, 
namely growth, carcass, and reproduction (Table 1).

Birthweight is used to calculate adjusted 50 days weights and is considered valid 
only when it is between 0.5 kg to 9.9 kg (Schaeffer and Szkotnicki, 2015). Thereby 
birthweight outside this range remains in the database but is set to missing for genetic 

Material and 
methods

Table 1. Description of the recorded traits in GenOvis evaluations. 
 

Group Traits 
Growth Lamb survival (direct) (%) 

Birth weight (direct) (kg) 
50-day weight (direct) (kg) 
Gain 50 – 100 days (kg) 

Carcass Fat depth – ultrasound (mm) 
Loin depth – ultrasound (mm) 

Reproduction Lamb survival (maternal) (%) 
Birth weight (maternal) (kg) 
50-day weight (maternal) (kg) 
Age 1st lambing (days) 
Lambing interval (days) 
# Born (1st and later lambings) 
Total weaning weight (1st and later lambings) 

 
 
 
 

Table 2. Average birth weight used by breed 
group when birth weight is missing. 
 

Breed Group Average birth weight (kg) 
1 3.67 
2 4.53 
3 4.86 
4 4.11 
5 4.98 
6 4.72 
7 4.83 
8 2.83 
9 4.17 

10 3.88 
11 4.04 
12 4.57 
13 3.77 
14 4.48 
15 3.75 
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evaluation purposes (Schaeffer and Szkotnicki, 2015). When not reported, an average 
birthweight per breed is used (Table 2)  (Schaeffer and Szkotnicki, 2015).

50-day weight is the weight taken around 50 days of age, which, at a practical level, 
means that the actual weight should be taken between 28 to 72 days of age (Schaeffer 
and Szkotnicki, 2015). If the age at weighing is outside this range and/or the taken 
weight is not between 4.0 kg and 51.0 kg, the weight is declared missing (Schaeffer 
and Szkotnicki, 2015). As growth from birth to 50 days of age is assumed to be linear, 
weight is adjusted to 50 days of age by extrapolation (either up or down) (Schaeffer 
and Szkotnicki, 2015).

Lamb survival is defined with 5 categories, where 1 is an animal that died shortly 
after birth and 5 an animal that has made it to weaning age (Schaeffer and Szkotnicki, 
2015). Categories 2, 3 and 4 are different lengths of survival, but with a death before 
weaning (Schaeffer and Szkotnicki, 2015).

Gain from 50 to 100 days is the difference between the weight at 100 days of age 
and 50 days of age (Schaeffer and Szkotnicki, 2015). The 100-day weight is provided 
by producers, which should be taken between 73 to 135 days of age and should be 
between 10.0 kg to 80.0 kg (Schaeffer and Szkotnicki, 2015). As growth from 50 
days to 100 days of age is assumed to be linear, 100d weight is adjusted to 100 days 
of age by extrapolation (either up or down). This is the gain 50-100d that is used in 
breeding values calculation. The 100-day weight must be taken at least 28 days after 
the weaning weight otherwise it is set to missing. (Schaeffer and Szkotnicki, 2015). 

Fat and loin depth are ultrasound traits, which means that they are taken by ultrasound 
measurements (Schaeffer and Szkotnicki, 2015). Ultrasound measurements are taken 
around 100 days of age (between 73 to 135 days of age) (Schaeffer and Szkotnicki, 
2015). Lambs must be weighed at the same time. The ultrasound weights must be 
between 10.0 kg to 80.0 kg. For the measurement lambs must stand upright on all four 
legs and kept motionless in a cage, a balance or other installations (Fortier, 2022). 
Lambs back must be straight (Fortier, 2022). The measured zone is located between 
the 3rd and 4th lumbar vertebrae (Fortier, 2022). The measured zone needs to be 
shaved and cleaned to enhance contact between the skin and the ultrasound standoff 
and thus improve image quality (Fortier, 2022). Measurement is taken perpendicular 
to fat layers and at the muscle deepest part (Fortier, 2022). Two thicknesses of fat 
are measured, a first one above the deepest part of the muscle, and a second one at 
1.5 cm from the first measurement, always perpendicular to the layer of fat (Fortier, 
2022). A third measurement is taken to establish the muscle depth (Fortier, 2022). The 
skin should not be included in the lamb fat thickness measurement (Fortier, 2022). 
Fat measurements must be higher than 0.0 mm and below 14.9 mm to be included 
in breeding values. Loin depth must be between 10.0 mm to 44.0 mm. Loin and fat 
measurements are adjusted on lamb weight instead of lamb age. This adjustment is 
calculated at breeding value calculation. Records out of range are set as missing values.

The total weaning weight (TWW) is the sum of the adjusted 50-day weights of 
lambs that were weaned, which is calculated for first and later lambing (Schaeffer 
and Szkotnicki, 2015). This includes number of lambs weaned, but also how well the 
raise dam contributed to the lambs weaning weight. The genetic model account for the 
proportion of male and female progeny as there is a sex difference in weaning weights 
to consider. Bottle raised lambs were ignored. (Schaeffer and Szkotnicki, 2015). 

The EBVs (Estimated Breeding Values) are calculated across breeds by multi-traits 
models on a weekly basis using Fortran programs specifically adapted for the sheep 
context. The EBVs are transformed and published in Expected Progeny Difference 
(EPD) for the use of the breeders. The genetic trends presented below are the average 
EBVs of lamb born during each year from the genetic evaluation run of the second 
week of May 2022. There are 2 genetic evaluation models, one for growth and carcass 
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traits and the other for reproduction traits. Six traits are currently evaluated for growth 
and carcass (survival, birthweight, 50-days weight, gain from 50 to 100 days, fat and 
loin depth). All 6 traits are evaluated for direct (dir) and maternal (mat) genetic effects 
even if maternal effects are low for gain, loin and fat. The EBV dir (e.g.: Birth weight 
dir) refers to the animal own ability to perform while the EBV mat (e.g.: Birth weight 
mat) refers to the dam contribution on a lamb performance. The recording allows the 
distinction of three (3) different dams that have influenced their trait observations. The 
first is the genetic dam of the lamb. This is the female that has provided one half of 
the animal’s DNA. The second dam carries the embryo and gives birth to the lamb(s). 
In most cases the `birth’ dam is the same animal as the `genetic’ dam. However, for 
producers that use embryo transfer (ET), then ̀ birth’ dam may be an unrelated female. 
The third dam raises the lamb from birth to weaning age. The `raise’ dam may be the 
same as the genetic dam or may be the same as the `birth’ dam, or may be a foster 
dam. The ̀ raise’ dam may actually be a bottle for bottlefed lambs. Biologically, the ̀ birth’ 
dam has an influence on survival and birthweight. The ̀ raise’ dam has an influence on 
50-d weights, gain, loin, and fat thickness. The genetic dam has an influence on all six 
traits through the relationship matrix. Similarly, litter effects are associated with either 
the `birth’ dam or the `raise’ dam. Age of dam effects are also assigned according to 
`birth’ dams or `raise’ dams (Schaeffer and Szkotnicki, 2015).

For the reproduction genetic evaluation model, a six-trait system was developed with 
three traits for parity1 and three traits for later parities. Age at first lambing, number 
born at first lambing, and TWW at first lambing were three traits for first parity animals, 
and interval between lambings, number born, and TWW were for second and later 
parities. First parity and later parity traits have a genetic correlation of only 0.7, so that 
they can be considered as different traits (Schaeffer and Szkotnicki, 2015).

EBVs are used to calculate selection indexes to support breeders in multi-traits selection. 
A total of 6 indexes have been developed following the work of Quinton (2012) but 3 main 
indexes are used for 3 main purposes : terminal, maternal and higher prolificacy. The 
relatives weight of the traits within these 3 indexes are described below. For example, 
breeders having terminal breeds as Suffolk and Hamphire are recommended to use the 
Carcass index to improve growth and carcass traits, prolific breeds as Rideau Arcott 
and Romanov can use the Maternal index for a focus on mothering abilities whereas 
maternal breeds as Dorset and Polypay will have a focus on higher prolificacy with the 
Higher prolificacy index. The selection indexes are published for all animals of all the 
breeds which allows the breeders to select its sheep for all the purpose.  

Over the past ten years, GenOvis has seen its number of members increase with the 
arrival of Ontario in the program (previously known as SFIP) in 2011 and two other 
industry organizations (OSF and CSBA) in 2016. Also, lots of effort were put to make 
producers aware of the importance of the records assiduity and consistency into the 
database. Since 2016, a 36 to 50% increase is observed in the number of records for 
growth traits, namely the number of lambs, the birth weight, the 50-day weight, and the 
100-day weight (Figure 1A). Records for number of lambs are higher than every other 
growth trait (Figure 1A). Although the number of records is noticeably lower for loin 
depth, an important increase of   ? 140% in its records has been observed over the past 
ten years (Figure 1A).  The low records of loin depth compared to other growth traits are 
explained by the fact that this trait needs to be measured by ultrasound, thereby only 
a few producers pay for it and accredited technicians are not available in all provinces.

Selection indexes

Results and 
discussion
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The number of lambs born per breed is quite stable in the past ten years for the majority 
of breeds, except, Crossbred, Romanov and Rideau Arcott (Figure 1B). Romanov and 
Rideau Arcott breeds have seen a 100% and XXX% increase in their number of lambs 
from 2016 to 2021 given the need to improve prolificacy for the producers. Crossbred 
group has a 50% increase in its number of lambs from 2014 to 2021 (Figure 1B) that 
could be explained by commercial producers being interested in recording data to follow 
their performance, do benchmarking and using breeding values for in-flock replacement. 
Many Crossbred lambs are hybrid or F1 lambs or produced by hybrid ewes as DP/
RV for use in commercial flocks as replacement ewes or to produce market lambs.

The EBV 50-day weight genetic trend has been upward over the past 10 years, 
predominantly for Suffolk and Hampshire which are terminal breeds (Figure 2A). 
Although Romanov breed is a prolific breed with a slower growth rate, an interesting 
increase is seen (Figure 2A). For Dorset, Rideau Arcott, and Polypay breeds the 
increase is slower (Figure 2A). The same upward tendency is seen for the EBV gain 
50-100d genetic trend (Figure 2B). Suffolk breed is still higher than any other breed. 
Polypay breed still have a slower increase for the EBV gain 50-100d genetic trend, 
and Romanov breed have again a good upward trend even if below zero (Figure 2B). 
The drops in the trend for the Dorset breed in 2017 can be explained by the sell of an 
important Dorset flock used for RandD purpose.  

A slow upward trend is seen for the EBV fat depth genetic trend in Dorset, Rideau, and 
Polypay breeds (Figure 3A). After an upward trend, Hampshire breed had an important 
drop in 2019 for EBV fat depth to reach the same EBV seen in 2012 (Figure 3A). 
Since 2018, Suffolk breed had an impressive increase in its EBV fat depth (Figure 
3A). Romanov breed, for its part, has a low downward genetic trend for its EBV fat 
depth (Figure 3A).

In the past 10 years, a rapid upward genetic trend of EBV loin depth is seen for Suffolk 
and Hampshire breeds that follow each other closely with an EBV around 2, in 2021 
(Figure 3B). Since 2017, Dorset and Polypay breeds have seen an observable increase 
in their EBV loin depth genetic trend (Figure 3B). For Rideau and Romanov breeds, 
the EBV loin depth genetic trend is slowly increasing. The genetics correlations, breed 
purpose, the selection indexes used within each breed and the number of ultrasound 
measurement within each breed can explained partly these trends for carcass traits. 
Polypay, Rideau Arcott and Romanov breeds have adopted more recently the ultrasound 
measurements and for a small proportion of the population which are shower more 
recent significant improvement of loin depth. These breeds are also maternal or prolific 
breeds. Suffolk and Hamphire breeds are terminal breeds with a higher emphasis on 
carcass traits in the Carcass selection index which can be seen on the genetic trend of 

Figure 1. Records and breeds in GenOvis.
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loin depth.  Dorset is a mixture of being selected as a dual breed by some producers 
and having historically ultrasound measurement in their population. The fat depth is 
having a negative value in the selection indexes but is also unfavourably correlated 
genetically with loin depth and growth traits. The more recent increase of fat depth 
in the Suffolk breeds underline the relevance of taking ultrasound measurement and 
using the Carcass index.   

The genetic trends of lamb survival are showing no increase for the Romanov and 
Dorset breeds and a slow increase for the other breeds. The direct EBV of Lamb 
survival is having a higher relative weight in the carcass index than the maternal and 
the higher prolificacy. However, some Suffolk and Rideau Arcott breeders seem to be 
more concerned about this trait and adding some value to it.

The Suffolk and Hamphire breeds are showing no improvement of the maternal 50 days 
weight. This trait is not included in the Carcass index but some cautious should be 
taken in the Hamphire breed in the coming years considering the decrease in 2021. The 
genetic trends are positive for the Polypay, Dorset, Rideau Arcott and Romanov and in 
line with the relative weight of this traits in the maternal and higher prolificacy indexes. 

No specific trends are observable for Number of lambs born except a very slow 
improvement in the Dorset in more recent year. Again, it is consistent with the low 
heritability of the traits and the higher emphasis of the trait in the higher prolificacy 
index for the Dorset breed. A potential explanation for this newly trend in Dorset can 
be benefit from additional data coming from commercial flocks using crossbred ewes 
as Dorset/Romanov having many litters record for known Dorset sires. The genetic 

Figure 2. Genetic trends of growth traits per breed.

Figure 3. Genetic trends of carcass traits per breed.
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trends of Total weight at weaning seem to increase more constantly in Romanov and 
Rideau Arcott breeds which are using the maternal index as selection index. However, 
the relative weight of this trait in the maternal and higher prolificacy indexes as well as 
the low heritability may explain the low trends and some inconsistencies.  

In general, the average inbreeding levels of lambs born from 2012 to 2021 are showing 
slow increases. The change in inbreeding levels varied from negative in Polypay (-0.2%) 
to the largest positive increase in Dorset (+1.1%). For most of the breeds, inbreeding 
level trends can be acceptable considering the low increase per generation and the 
possibility to import breeding stock from other countries. The Rideau Arcott had some 
significant increase in their inbreeding levels until 2018 and some cautious has been 
taken in using mating plans to maintain it at a more constant level. This breed has been 
created entirely in Canada and cannot rely on breeding stock import.

The sheep meat sector is relatively small but important for the Canadian agriculture 
industry. More developments and innovation are needed and encouraging initiatives can 
be observed through better integration of genetic services in small ruminant and better 
standardization of data recording. GenOvis database is a gold mine of information that 
allows breeders to make genetic gains and to help producers make decisions for their 
flocks and improve their profitability.  As the demand for lamb meat is on the rise in 
the past years, these precious data can be much more enhenced. Precision livestock 
farming (PLF) is a popular current concept that uses « big data » to make a more 
sustainable agriculture (Koltes et al., 2019).  PLF is associated to different advantages 
as to improve precision of breeding, feeding, and animal health, productivity, and well-
being (Guarino et al., 2017, Wolfert et al., 2017; Weersink et al., 2018). GenOvis data 
can be valued in technologies combining phenotypes and genomics and offers an 
opportunity to bring the PLF concept to the Canadian sheep industry. The association 
of phenotypic data to genomics allows the development of genomic breeding values and 
create genomic signature with genetic markers (ex.: SNP, CNV, etc.) specific to some 
economic traits of interest (Xie and Tammi, 2009; Uitterlinden, 2016). GenOvis offers 
vast opportunities for the Canadian sheep industry to address current and emerging 
challenges as economic viability, environmental sustainability and resiliency. 

	

Figure 4. Genetic trends of lamb survival (dir) and maternal 50d weights per breed.

Conclusion
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Figure 6. Average inbreeding levels (%) per breed.

Figure 5: Genetic trends of number of lambs born and total weaning weight per breed
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Recently the world has been challenged by epidemics and most recently a human 
pandemic. This has disrupted the global economy and caused heartache for millions of 
people. Through this period of uncertainty, new ways to track people were developed 
using a carried smart phone that enabled check-ins, registrations, and proximity 
alerts. The threats today and of the future are the same for animals and an improved 
system(s) is required now. 

Animals roam remotely and gather intensely; most animals though are where traditional 
communications are absent. They can’t carry a device or recharge a smart phone. 
Yet globally, challenges of disease biosecurity and consumer traceability demand is 
intensifying. Therefore, the identification and traceability technology of the future needs 
to be dual operated in unlimited range and intense environments, reliable, automated, 
auditable, ubiquitous, interoperable, secure high integrity data, recording real time 
location and activity plus adaptable between intensive and extensive operations. The 
technology of now and the future should go further and record their impact on the 
ecology, environment, feed efficiency for genetic traits and health/welfare to determine 
if changes are required through management practices or other means to meet ESG 
expectations of the future from the supply chain to the consumer. The technology of 
now and the future should also incorporate one touch recording of transfers, providing 
information for the entire life of the animal.

However, there has been billions spent around the world on existing RFID systems. 
Therefore, if we disrupt and cause radical change too fast we will leave those 
investments obsolete or unable to serve out their lifetime. Instead, a transformative 
future technology needs to be introduced that is interoperable with existing infrastructure 
while rewarding those transferring to a new automated remote way of gathering 
information that is beyond an RFID number and includes real time behaviour/activity, 
location and proximity history of the animals during their lifetime. Transformative 
commercial technologies exist, and the approval processes are already dictated by 
international standards like ISO and international communication protocol requirements. 
Approval should only consider information collected and the way in which the technology 
interacts with the animal for ethical and welfare consideration. Long national approval 
processes should be removed and instead a centralised approval from a single body 
(ICAR) to assess so that these platforms may transparently operate to democratise 
the information about the food consumed globally. 
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Innovation is fast outpacing regulation. An international framework of global 
requirements to enable future rapid adoption of improved technologies for identification, 
traceability and activity are required now or risk substandard renegade schemes and 
technologies that operate outside of required biosecurity needs.

Keywords: Identification, traceability, transformative, interoperable, automated, 
biosecurity, regulation, standards, technology, ethical, animal welfare, democratise, 
international.

Today we are faced with the frequency of biosecurity threats at an increasing rate. The 
current systems, regulations and standards implemented by nations, however proud 
of what they have, are insufficient to cope with biosecurity incursions of now and the 
future. We will see new biosecurity devastation from diseases, viruses and bugs that 
we had never previously known about or had been laxed to their incursion. Nations 
must be flexible and allow for new processes to be implemented quickly to cope with 
an ever-changing dynamic that had evolved as the world has become more global and 
movements more frequent between borders. Even then, as climate change continues 
to evolve, we will see diseases cross borders through insects or through airborne 
movement. These threats are very real with many current and recent examples of 
how quickly things may evolve. Nations can no longer put their head in the sand and 
pretend that the systems they have today will hold them in good stead for generations. 
There are many examples where generational change is necessary to implement new 
ways of doing things, new technologies and new frameworks. We can not afford to sit 
on our laurels of past and hope for the best.

Double this requirement when considering the consumer who has never known less 
but wants to know more about where their food comes from for provenance, animal 
welfare, sustainability, food security and safety.

So how do we achieve all of these demands without stifling the food production system 
through regulation and outdated systems and processes?

There has been very few, if any new types of identification traceability systems 
implemented for decades in any country. Those nations that implemented RFID systems 
have led the world for traceability for decades however they are now struggling with 
the process changes required when considering the new environment in which the 
world operates. They stand by what they have previously achieved and a mindset that 
“if it ain’t broke, don’t fix it”, completely impervious to what is required now and in the 
future. Those nations set the benchmark and toiled to gain acceptance of the system 
at the time that satisfied the limited need of the past and subsequently are unable 
to shift mindset that those capabilities are now insufficient and outdated to today’s 
desperate requirements.

Ironically, it is nations without current identification systems that have the opportunity to 
implement a fresh mindset and leapfrog the current leaders for world leading traceability 
and competitive advantage. These nations and those willing to accept that the status 
quo is insufficient and requires change, will be the new leaders in food security and 
food safety and create a distinct competitive advantage.

New dynamic frameworks with centralised assessment and clear interpretation of what 
must be achieved from any technology must be available to ensure that regulation 
keeps pace with innovation. These frameworks become less how things are done but 
rather the parameters they provide to achieve the needs of the changing environment. 
These new technologies or processes should also be transparent enabling national 
systems and/or consumers to access if desired or required. This type of thinking is 
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novel for regulators who have previously had success with outdated systems and who 
are reluctant to change to meet the demands of today’s producers and consumers to 
automate and democratise information critical to the supply of food and associated 
products to an ever growing and more demanding global population.

Technologies are evolving that can do many things and to prescribe a single 
methodology is both limiting and perhaps careless. Today and in the future, we face 
challenges of speed to face biosecurity challenges, identification traceability and 
consumer demands. 

There are a range of technologies currently available from facial recognition, 
RF frequency identifiers, bolus, injectables, drones, satellite trackers and other types 
of markers and monitoring. Most of these have prescribed purposes and require 
infrastructure to be established to operate making them expensive to implement, 
manual to operate and limited to particular purposes.

Regardless, this should not limit their applicability if they have the ability to reliably 
provide the information prescribed at every stage of the supply chain or if an animal 
was to only stay at the particular stage of the supply chain and never leave where that 
technology is able to be applied.

Scalability remains the primary challenge of most technologies and the ability to 
implement with existing systems while transitional activities occur. That is, the next 
stage of provenance proof will need to be transformative incorporating existing ways 
of identification traceability while building future automated multi-times daily reporting 
systems to display and record insights of the animal during its lifetime.

The operations of animals during their lifetime also transition between extensive 
operations, often required for breeding, sustainability, and animal welfare purposes 
to the intensive food production environments. Technologies that operate in one 
environment, often do not operate in the other creating a limiting effect to their usability 
in a supply chain. 

While software systems are good for management, visualisation and blockchain, they 
do not create the data from which those platforms are populated. They are necessary 
but by themselves, not a solution.

Currently there is only one such transformative technology that incorporates satellite 
technology that can transition to Bluetooth that is interoperable in an intensive and 
extensive environment providing identification traceability and biosecurity contact 
tracing capabilities as well as performance monitoring. While others excel in their 
particular field, the adoption rate will be limited making it difficult to prescribe in national 
cases unless every sector of the supply chain is considered. Other technologies only 
target a sector of the market however large or small, and require additional input or 
technologies to transition data from one platform to another and  most operate a closed 
rather than interoperable ecosystem.

Technologies
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ICAR provides the guidelines that some nations adopt as their national requirement 
to operate while others prescribe additional requirements that take many years, are 
not practical nor are they consistently repeatable and appear to be a block for any 
transformational or improved technologies due to potential commercial changes and 
replacements. The latter are usually nations with existing standards that find it difficult 
to  improve from methodologies implemented decades ago with incumbent suppliers 
who are very well known, comfortable with the status quo. The reason to change 
often receives pushback for commercial preferences rather than for the betterment 
of the industry. Some individual national programs, however great or small in their 
differences, have resistance towards change as individual interests of committees and 
sub committees can take  precedent over the intended good for systems that were 
implemented decades ago which may no longer be able  to manage the threats and 
purpose of today.

The continuation of resistance to change or to adopt improved technologies that 
increase speed to market while providing increased quality control, only increase the 
likelihood of renegade new platforms to enter the space, this has happened in other 
industries such as Social Media platforms to traditional media or rideshare to the taxi 
industry.

The guidelines for traceability, especially for exporting markets, should be flexible 
enough to incorporate new technologies and governed by principals of a central body 
assuring which ever technology is able to provide the necessary information needs. 
This would increase the international competitiveness for supply of animal products and 
ensure that the required information is able to be supplied in an automated timely nature 
with minimal input required from the producers themselves. The information should be 
democratised, automated, fluid and transparent for regulators and consumers to see.

Adoption of new technologies also increases the rate of digital transformation so that 
storage for historical and traceability purposes can be done in a reliable, efficient, 
fast, compact and cost effective way. Currently so many national traceability systems 
are paper based with digital options. The paper systems are where information is 
lost, unreadable or sometimes frauded. Existing systems are often manipulated, only 
inserting tags at the final moment between movements with no way of knowing where 
the animal originated or any of its history. 

Biosecurity threats and incursions are coming more into focus as international 
movement via ships, planes and road based transport systems that carry animals or 
animal products which may be carrying diseases or parasites across borders into other 
nations or regions. When this occurs, at best we currently only have passive systems 
to rely on to provide the information required and this is only valid if all of the paper 
based systems were correctly completed, submitted and considered. This reliance 
on humans to do the right thing or do things correctly every time in every place is a 
massive risk to the world and our ability to feed a growing population safely and reliably.

Only automated technologies that can demonstrate the ability to operate without 
any additional infrastructure and with the capability to report across borders can be 
considered for any serious implementation at scale or in nations where export is part 
of their drivers for production.

Never before have we seen such significant threats take hold around the world and 
cause such devastation to the global food supply. Examples are African Swine Fever 
where approximately 50% of Chinas’ swine supply was decimated, Mycoplasma Bovis 
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in New Zealand or currently the Foot and Mouth and Lumpy Skin Disease in Indonesia 
threatening to jump the border into Australia, one of the worlds largest exporters of 
beef products.

The damage done from these incursions reaches into the billions of dollars, lost market 
access and reputation plus a major deployment of resources to manage the situation, 
placing people, eco-systems and animals at risk for no economic or social gain.

The intense systems are not likely to escape these incursions in many supply chain 
systems with breeding in extensive operations and then feeding into the intense 
operations where a single infected animal can cause hundreds or thousands to be 
infected in a relatively small space and short timeframe. The animals in the extensive 
production systems are also exposed to wild animals that may be carrying the diseases 
and are able to move beyond boundaries providing the interconnectivity to spread from 
one animal to another. The movement along supply chains will also spread biosecurity 
incursions rapidly, with no illegality intended, often operating with the innocence of 
those who do it as their way of life, without full engagement of inspection and often in 
remote locations. For this reason, we need to have notifications both on the animal that 
can alert through an LED or similar and to alert digitally when an event occurs for the 
early detection and then subsequent contact tracing to determine the extent to which 
the incursion has occurred and its origins, most likely through genomic sequencing.

The deployment of Animal Identification technologies to support digital transformation 
cannot be ignored, swept away or pretended not to exist. They are real and available 
now in multiple countries. The current traceability systems are not robust enough to 
protect for tomorrow’s challenges and provide the information required for protection or 
to inform a growing inquisitive population on where their food comes from. International 
frameworks must be derived and deployed as soon as possible so that regulation 
may keep pace with innovation, or the market will create their own principles and 
acceptances to operate seeking forgiveness rather than permissions that are irrelevant 
to today’s needs and opportunities.

There are technologies that can provide all of the needs of the future with unlimited 
range and machine learning to continually update to the needs of tomorrow, that is 
scalable, reliable, interoperable and critical to the future of the animal recording. These 
technologies will have others join them in capability in the future to ensure they also 
have competitiveness and challenge to continually improve. 

New frameworks are required now, technology development is moving at a rapid pace. 
If agencies and nations are not ready, producers will rely on ways to get their products 
to market. The industry is undergoing a significant demographic shift and the future 
generations will not wait. Allowances and guidelines that speak to outcomes rather 
than methodologies are required if we are to support digital transformation across 
livestock production and build a prosperous and effective safe food future to feed a 
rapidly growing population.

Meat and Livestock Australia - serving red meat and livestock producers | 
Meat and Livestock Australia (https://www.mla.com.au/). 
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Exchange of data between on farm equipment and farmer owned Dairy Data 
organization (DDO) databases has been a subject for years. With the updated ADE 
standard and the iDDEN integration we see the following advances to be ready to be 
harvested for the different stakeholders

•	 MRO (milk recording organization) / DDO (Dairy Data organization)

	 Data for milk recording

	 Data for breeding evaluation

	 Data for decision support

	 Only one integration (there will be some minor extra work pr OEM)

•	 OEM (management system in connection to on farm equipment)

	 Only one integration (there will be some minor extra work pr MRO/DDO)

	 Maybe even better market position

	 Data back up

•	 Farmers

	 Data only have to be recorded once

	 Better data - Les bugs in data

	 Better decision support on more data from management systems

	 Easier daily routines – les trouble

Exchange of data within the dairy business has been a subject for many years. The 
farmer and the service sector around the farmer see a growing need to have data 
available wherever relevant. With the dramatical growing number of sensors in the 
business and the increasing number of data the challenge is only growing

Throughout the years the Electronic Data exchange, ADE, working group in ICAR has 
been working on a harmonized data description and some entities in the market has 
started the implementation of the standard. One of them is iDDEN, who is a not profit 
company of DDOs from the countries listed in Table 1

Abstract
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With the whole set up in place we are see that we are about to overcome the challenge 
about “who to be the first if nobody else are using the system”

The Danish DDO (Dairy Data Organization) owned by the farmers organization and 
operated by SEGES innovation has for more than 10 years work with exchange of 
data first on national level, then in cooperation with the other Nordic organisation, 
where the NCDX system was developed and latest in a worldwide perspective with the 
iDDEN system. The main challenge has been that all supplies of on farm equipment 
must integrate to a variety of different DDOs and wise versa seen from DDOs point of 
view – in the perspective that the farmer is asking for the exchange

With development of NCDX we saw positive attitudes in the market, and some 
integrations that increased the amount of data which were exchanged. When iDDEN 
was established and used the NCDX as basic and decided to upgrade to the ADE 
standard it seems like a breakthrough. There is a growing interest from suppliers of 
equipment and DDOs outside iDDEN

From the start there has been a demand to start with most used data like reproduction 
data. Later came other data items like milking data, health data, which are the main 
categories in the iDDEN system today. The wishlist for more data items is long and 
are dynamic prioritized by the ADE WG and the users of the ADE standards. Next in 
line is right now sensor data, feeding and group data

To cover the variety in usages and practice in different situations, it has been important 
for iDDEN that data can be exchanged both ways. In the most ideal situation this means 
that the farmer can choose where to enter data and that data are available where needed

In the iDDEN agreement is included a data exchange agreement which is meant to be 
local. The data exchange agreement will regulate which data are to be exchanged by 

Experiences of 
implementation 

Which data

Data both way

Varity in which 
data to exchange

Table 1. List of countries participating in the ICAR ADE WG. 
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the individual supplier of equipment and the individual DDO. In that way it is possible 
to respect the different business situation, there is in different local areas

From the DDOs in iDDEN 4 have been working on there integration and on the supplier 
side at least to are working on the integration, and more are about to start. In Denmark 
we expect to go in production test on a farm and test on real data in June 2022

The challenge of getting data to flow between the stakeholders around the farmer can 
be solved. By having an independent body as the ADE WG in ICAR, and non-profit 
company to take care of the implementation in an IT system, it is possible to develop 
and maintain a HUB so cost effective that it is attractive for the different stakeholders. 
We hope this will continue with increasing user, because with more users the fee for 
using the system will decrease

Thanks to iDDEN group, both the shareholder representatives and other related who 
have worked on making iDDEN a valuable system for the farmers that are listed below:

Status to day

Conclusion 
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Assessing welfare status of cows currently requires farm visits. However, detecting 
welfare status of cows using unbiased analyses of milk samples is a practical alternative 
as millions of milk samples are routinely collected for milk recording. Thus, we set out to 
isolate milk infrared spectral fingerprints representing effects of housing-configuration 
modification on milk composition that may be associated with changes in welfare 
status of cows. We applied a new analysis method to milk spectra by combining 
principal component analysis and mixed modelling. This new method was used in 
trials examining the impact of housing configurations, including 4 tie rail positions 
and 2 chain lengths, on milk composition. Principal components extracted from the 
averages of milk spectra collected during weeks 8-10 of the trials revealed a significant 
effect of the housing configuration treatment on those spectra. This analysis method 
was capable of capturing changes in milk composition that were attributed to negative 
and positive changes in welfare status of cows resulting from housing modifications 
to tie rail positions and chain length, respectively. Spectral analysis revealed higher 
levels of biomarkers related to body fat mobilization (i.e., beta-hydroxybutyric acid, 
acetone, and citrate), in milk from cows subjected to the tie rail position that had most 
restrictive access to feed which may have resulted in a possible reduced feed intake 
(not measured in the trial) that led to an elevated body fat mobilization. No changes 
in energy reserves estimable using visual body condition scoring were observed for 
those cows. These results were corroborated by increased injuries at two locations 
on cows’ necks because of pressure on their neck through repeated contact with the 
tie-rail, which may be indicative of laboured access to reach feed. In addition, milk 
from cows tied with longer chains had lower levels of biomarkers linked to episodes 
of ruminal acidosis (i.e., milk non-protein nitrogen and trans fatty acids). Behavioural 
observations showed that these cows spent more time with their heads in the manger 
area, assuming they might have chewed more; hence, they might have produced more 
saliva to balance the ruminal pH. To conclude, this novel spectral analysis methodology 
offers a new tool for assessing cow welfare status by detecting trends of changes in milk 
composition in their early stages, which will provide a mean for remote and unbiased 
detection of cows or herds with welfare problems before appearance of clinical signs.

Keywords: FTIR spectroscopy, cow welfare, housing configuration.
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Assessing welfare status of cows currently requires farm visits. However, detecting 
welfare status of cows using unbiased analyses of milk samples is a practical alternative 
as millions of milk samples are routinely collected for milk recording. Several studies 
have demonstrated that milk composition reflects the concentrations of key blood 
plasma metabolites, such as non-esterified fatty acids (NEFA) (Jorjong et al., 2014) 
and beta-hydroxybutyric acid (BHB) (Pralle et al., 2018), the nutritional state of the 
cow (Weber et al., 2013, McParland et al., 2014) and health conditions (Arnould et al., 
2013) that might affect the cow’s productivity. Other studies have demonstrated that 
health issues can be associated with behavioural changes that precede the clinical 
diagnosis. For example, cows that were diagnosed with a left displaced abomasum 
showed increased step activity in comparison to healthy animals during the week prior 
to the clinical diagnosis (Petersson-Wolfe et al., 2017). Cows at risk of subclinical 
ketosis were observed to have fewer feeding visits and 18% less dry matter intake 
in comparison with healthy controls in the week leading up to calving (Goldhawk et 
al., 2009). It was also observed that lying time was greater and average daily steps 
were significantly lower five days before cows were diagnosed with mastitis (Yeiser, 
2011), and 2 days before onset, lying time decreased compared with that of healthy 
cows (Petersson-Wolfe et al., 2017). In this study, we hypothesized that cow welfare 
status might lead to physiological changes, which might be reflected in milk chemical 
composition. Hence, we set out to isolate milk Fourier transform infrared (FTIR) 
spectral fingerprints representing effects of housing-configuration modification on 
milk composition that may be associated with changes in welfare status of cows. We 
applied a new analysis method to milk spectra, which was described in a previous 
publication (Bahadi et al., 2021).

The animal trials were conducted at the Macdonald Campus Dairy Complex of McGill 
University (Sainte-Anne-de-Bellevue, QC, Canada).

Forty-eight lactating Holstein cows were assigned to 4 tie-rail (TR) configurations 
varying in height and position (Table 1). Details about these treatments can be found 
elsewhere (St John et al., 2021). Cows were assigned to 6 blocks to account for 
parity (primiparous: n = 12, multiparous: n = 36), days in milk (DIM; early: 0–100 d, 
mid: 101–200 d or late: 201–305 d), and location in the barn prior to the start of the 
experiment. Cows were housed in two separate rows of tie-stalls facing the barn wall 
and they were in trial for 10 weeks with 24 cows starting in summer 2016 (period 1: 
from July 25th to October 3rd) and the remaining 24 cows starting in fall 2016 (period 
2: from October 10th to December 19th).

Twenty-four lactating Holstein cows were assigned to 2 tie chain length (TCL) treatments 
(Table 1). Details about these treatments can be found elsewhere (Boyer et al., 2021). 
Cows were assigned to 12 different blocks of two cows to account for age of the cow 
(i.e., parity or number of lactations) and days in milk within current lactation (average 
DIM 129) and were placed evenly in two rows facing a wall within the barn.  The trial 
lasted for 10 weeks from February 20th, 2017, to May 1st, 2017.
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One composite milk sample per week was collected from each cow participating in the 
trials. The sample consisted of milk collected during the evening milking and the morning 
milking of the next day. All collected milk samples were analysed for milk composition by 
FTIR spectroscopy at the Lactanet laboratory (Sainte-Anne-de-Bellevue, QC, Canada) 
using the same CombiFoss FT+ analyser (FOSS, Hillerød, Denmark).

Baseline and treatment application average spectra were calculated for each cow from 
spectra of samples collected from weeks 1 to 3 and from weeks 8 to 10, respectively. 
To detect the housing treatment effect, we applied a new analysis method to those 
spectra by combining principal component analysis (PCA) and mixed modelling. Details 
of this methodology are described elsewhere (Bahadi et al., 2021) and are summarized 
in Figure 1. The statistical models that were used in the analysis were: 

For the TR trial 

Yijk = µ + trti + periodj + blockkji + eijk					     (1)

where trti was the fixed effect of the ith TR configuration treatment, periodj was the 
fixed effect of the jth period, blockkji was the fixed effect of kth parity, DIM and location 
in the barn from the period on the TR configuration treatment and  was the random 
residual error. 

For the TCL trial 

Yijkl = µ + trti + rowj + blockk + eijk						      (2)

where trti was the fixed effect of the ith TCL treatment, blockk was the fixed effect of the  
kth parity and lactation stage combination, rowj was the random effect of the jth row in 
the barn and eijkwas the random residual error.

Principal components (PC) 7 and 6 revealed significant housing treatment effects for 
the TR (P = 0.011) and TCL (P = 0.032) trials, respectively (Table 2). Both PCs did 
not reveal significant effects for the other studied factors that were included in their 
respective statistical models. This observation suggests that the TR configuration and 
TCL might have influenced milk composition during these two trials. Differences in the 
least-squares means for scores of PC7 and PC6 for the TR and TCL trials, respectively, 
suggest that composition of milk from cows enrolled in T3 was significantly different 
from that of cows enrolled in T1 for the TR trial and the composition of milk from cows 
enrolled in T1 was significantly different from that of cows enrolled in T2 for the TCL 
trial (Table 3). 

For the TR trial, inspection of the integral of the loading spectrum for PC7 revealed an 
inverse relationship between lactose and biomarkers related to body fat mobilization 
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(i.e., BHB, citrate, acetone). This observation can be interpreted that cows subjected 
to the tie rail position T3 had the most restrictive access to feed which may have 
resulted in a possible reduced feed intake that led to an elevated body fat mobilization. 
No changes in energy reserves estimable using visual body condition scoring were 
observed for those cows (St John et al., 2021). The behavioural results (St John et al., 
2021) showed that cows in T3 had increased injuries at two locations on cows’ necks 
because of pressure on their neck through repeated contact with the tie-rail, which 
may be indicative of laboured access to reach feed. 

For the TCL trial, inspection of the integral of the loading spectrum for PC6 revealed 
that milk from cows tied with longer chains had lower levels of biomarkers linked to 
episodes of ruminal acidosis (i.e., milk non-protein nitrogen and trans fatty acids). This 
observation suggests that cows with a longer chain may have a more stable ruminal pH, 
which is an indication of better digestive health. Behavioural observations showed that 
these cows spent more time with their heads in the manger area (Boyer et al., 2021). 
Increased access to the manger could mean easier access to feed, and by doing so, 
more time was available for rumination and chewing; hence, they might have produced 
more saliva to balance the ruminal pH. 

Table 1. Housing configuration treatments across the 2 trials. 
 

Treatments Trial Housing 
configuration T1 T2 T3 T4 

1 Tie rail1 122 cm x 36 cm 122 cm x 18 cm 112 cm x 18 cm 112 cm x 36 cm 
2 Chain length 1.0 m 1.4 m - - 

1 Height from the stall base x forward position from the manger wall 
 
 
 
Table 2. Principal components extracted from treatment application spectral datasets that revealed significant effects. 
The table also lists P values obtained from the SAS Mixed Procedure for tested effects in each trial. 
 

Trials Spectral 
Dataset1 PC Eigenvalue Explained 

Variation % P Values 

Trt2 Period Block Tie rail VN FD 7 3.82 1.37 
0.011 0.559 0.060 

Trt  Block Chain length VN FD 6 4.75 1.70 
0.032  0.088 

1 FD = first derivative, VN = vector normalized 
2Trt = treatment 
 
 
 
Table 3. Differences of least squares means for the scores of the principal components that revealed significant 
treatment effect.  
 

Trial Trt1 Trt Estimate Standard 
Error DF2 t Value P Value Scheffé Adj. P 

Value 
Tie rail T1 T3 2.1442 0.68 30 3.15 0.004 0.033 

Chain length T1 T2 -1.6819 0.6650 9 -2.53 0.032 0.032 
1Trt = treatment  
2DF = degrees of freedom 
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Figure 1. Workflow of hybrid data analysis approach of FTIR milk spectral data that 
combines multivariate analysis with mixed modelling to detect housing treatment effect 
(Bahadi et al., 2021).
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Milk FTIR spectra could detect changes in milk composition that could be attributed 
to negative and positive welfare status in cows. Behavioural and clinical results 
corroborated the findings of the new spectral analysis methodology. This methodology 
offers a new tool for assessing cow welfare by detecting trends of changes in milk 
composition in their early stages, which will provide a mean for remote and unbiased 
detection of cows or herds with welfare problems before appearance of clinical signs.  

Part of the material presented in this conference paper has been published in peer-
reviewed scientific paper Bahadi et al. (2021) and is currently in review for publication 
in Journal of Dairy Science (Bahadi et al., manuscript ID JDS.2022-22042).

Jessica St John (McGill University) conducted the tie rail trial and developed the SAS 
code to detect the treatment effect on milk components by the mixed procedure as part 
of her M. Sc. Thesis. Behavioural and other animal welfare outcomes for the tie-rail 
trial are published in St John et al. (2021).

Véronique Boyer (McGill University) conducted the chain length trial and developed the 
SAS code to detect the treatment effect on milk components by the mixed procedure 
as part of her M. Sc. Thesis. Behavioural and other animal welfare outcomes for the 
chain length trial are published in Boyer et al. (2021).

The animal trial was funded by Vasseur’s NSERC-Novalait-Dairy Farmers of Canada-
Lactanet Industrial Research Chair on Sustainable Life of Dairy Cattle. Complementary 
funding for the study (physiological indicators) was provided by NSERC Collaborative 
Research Development Grant (Project no. CRDPJ 499520 16) and FRQNT-CRIBIQ-
Novalait through Programme de recherche en partenariat pour l’innovation en 
production et transformation laitières (Project no. EPI 2016-138) and Lactanet.

The spectral analysis was performed at the McGill IR group.
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DUMPS (deficiency of uridine monophosphate synthase) and Haplotypes Holstein 
(HH1, HH3, HH4, HH5, HH6, HH7) are hereditary lethal autosomal recessive disorders 
that may affect Holstein cattle. The aim of the research was to determine the frequency 
of selected unfavorable mutations in the Polish population of Holstein-Friesian cattle. 
In the study 12 754 Polish Holstein-Friesian females were genetically tested. Results 
of the present study indicate, that the Polish population of dairy cattle is free from 
DUMPS. It turns out, that in 2019 the highest number of carriers were HH3 (5.81%), 
and the least HH7 (0.49%). In 2020, the highest number of carriers was HH5 (6.95%), 
and the least, similar to 2019, HH7 (0.45%).

Keywords: Cattle, gene frequency, microarrays, embryo mortality.

Fertility is one of the most important traits in animal production. Significant decrease 
in fertility of dairy cattle in Poland has been arising for many years - a decrease in the 
fertilization and normal pregnancy rate is observed. These problems may result from 
the accumulation of genetic diseases in the population. Since individual sires generate 
tens of thousands of progeny via artificial insemination, cattle breeding populations 
are susceptible to the propagation of recessive diseases. The resulting threat was not 
immediately recognized because the heterozygous animals (i.e. asymptomatic carriers) 
do not express the symptoms of disease. Due to the frequent occurrence of genetic 
defects in combination with high breeding values, they tend to spread throughout the 
population. The increasing incidence of genetic diseases in cow herds is also the result 
of increased inbreeding within the entire world’s cattle population. There are several 
specific genetic disorders associated with Holstein cattle. Particular attention should be 
paid to genetic defects causing embryo mortality. Among the most important defects 
are HH1, HH3, HH4, HH5, HH6, HH7, and DUMPS (Table 1).
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Genetic data used in the present study was collected in the process of routine estimating 
breeding value (EBV). Poland as a member of EuroGenomics Cooperative, uses their 
customized arrays. Material for genotyping (12 754 samples) was collected in the years 
2019 to 2020. Ear punch samples were collected with the use of AllFlex Tissue Sampling 
Unit (TSU). DNA extraction was processed with the use of Clean BloodandTissue DNA 
Kit (CleanNA, Netherlands) according to the producer manual in KingFisher DUO DNA 
processor (Thermo Scientific, USA). Normalized samples were processed according 
to Illumina HTS protocol. Beadchips were immediately scanned on Illumina iScan 
system, scans were analysed using GenomeStudio Software.

Results of the present study indicate that the Polish population of Holstein dairy cattle 
is free from DUMPS (since 1999 testing of Polish population of Holstein dairy breeding 
bulls is mandatory). It turns out that in 2019 the number of HH1 carriers was 2,95%, 
HH3 - 5,81%, HH4 – 2,33%, HH5 – 5,16%, HH6 – 1,83%, HH7 – 0,49% (Holstein-
Friesian population). In 2020 the number of carriers was correspondingly HH1 3,11%, 
HH3 – 4,42%, HH4 – 1,51%, HH5 – 6,95%, HH6 – 1,94%, HH7 – 0,45% (Figure 1).

No DUMPS carriers were detected in the present study. Our research results are also 
in accordance with the results of studies by Patel et al. (2006) and Oner et al. (2010) 
who reported no carriers respectively in Indian and Turkey dairy cattle populations. 
Similarly, Korkmaz Agaoglu et al. (2015), Koshchaev et al. (2018), Debnath et al. (2016) 
and Citek et al. (2006) did not detect any DUMPS carrier in their studies. The number 
of HH1 carriers in Poland is higher than in Brazil Albertino et al. (2022) and the USA 

Figure 1. Percentage of carriers of selected hereditary disorders in the Polish population of 
Holstein-Friesian cattle.
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Cole et al. (2016) at a similar time. Our research results are also in accordance with 
the results of studies by Schütz et al. (2016) (the number of HH3 and HH5 carriers over 
5%). Research by Cole et al. (2016) shows a lower percentage of HH4 carriers than 
in Poland in 2019-2020. There are no data available on the number of HH6 and HH7 
carriers in other countries. The percentage of carriers of selected genetic diseases in 
individual countries is presented in Table 2.

In recent years, several causal mutations have been discovered in dairy cattle, most 
of which negatively affect fertility - causing increased embryo mortality. Most of these 
diseases are inherited autosomal recessively. From a breeding point of view, it is 
precisely recessive mutations that have highly negative effects. That kind of diseases 
occur only in animals that inherit two mutant alleles (homozygotes). Animals with a 
single altered allele (heterozygote) do not get sick, but can pass the mutations on to 

Conclusion

Table 1. Basic characteristics of selected genetic disorders.  
 

Disorder name 
Species-specific 

name Gene Type of mutation 
Year first 
reported 

HH1 Haplotype HH1 APAF1 C>T 2012 
HH3 Haplotype HH3 SMC2 T>C 2013 
HH4 Haplotype HH4 GART A>C 2013 
HH5 Haplotype HH5 TFB1M Deletion of 138kbp 2016 
HH6 Haplotype HH6 SDE2 A>G 2018 
HH7 Haplotype HH7 CENPU Deletion of 4bp 2020 

DUMPS Deficiency of Uridine 
Monophosphate 

Synthase 

UMPS C>T 1993 

 
 
 
Table 2. Percentage of carriers of selected genetic diseases in different countries. 
 

Disorder 
name N Healthy Carriers % carriers Country References 

DUMPS 500 500 0 0 Turkey 
Korkmaz 

Agaoglu et al., 
(2015) 

DUMPS 73 73 0 0 Russia Koshchaev et al. 
(2018) 

HH1 248 248 0 0 Brazil Albertino et al. 
(2022) 

HH1 5729 5619 110 1,92 USA Cole et al. 
(2016) 

HH3 14 000 13 286 714 5,1 Germany Schütz et al. 
(2016) 

HH3 17 869 17 869 527 2,95 USA Cole et al. 
(2016) 

HH4 1218 1173 45 0,37 USA Cole et al. 
(2016) 

HH5 2100 1985 115 5,5 Germany Schütz et al. 
(2016) 
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their offspring. This makes it much more difficult to diagnose the disease at an early 
stage and to take preventive measures, e.g. to avoid using these pieces for matings. 
Therefore it is important to screen the population and identify carries to avoid economic 
losses due to these genetic disorders in the herd. Thanks to the regular application of 
genetic tests around the world, the population can be controlled.

The authors would like to thank the Breeders for providing the data for the study.
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It is important to characterize trends and seasonal patterns to project amounts and 
fluctuations in milk and milk components by states or regions. Hence, this study aimed 
to 1) quantify historical trends and seasonal patterns of milk and milk components 
production by US states; 2) classify states with similar trends and seasonal patterns into 
clusters; and 3) summarize the general pattern for each cluster for further applications in 
simulation models. Our dataset contained 9.18 million lactation records from 5.61 million 
Holstein cows distributed in 17 states during the period January 2006 to December 
2016. Each record included a cow’s total milk, fat, and protein yield during a lactation. 
We used time series decomposition to obtain each state’s annual trend and seasonal 
pattern in milk productivity. Then, we classified states with agglomerative hierarchical 
clustering into groups according to 2 methods: (1) dynamic time warping on the original 
time series and (2) Euclidean distance on extracted features of trend and seasonality 
from the decomposition. Results showed distinguishable trends and seasonality for 
all states and lactation numbers. The clusters and cluster centroid pattern showed a 
general upward trend for all yields (ECM, milk, fat, and protein) and a steady trend for 
fat and protein percent for all states except Texas. 

We also found a larger seasonality amplitude for all yields (ECM, milk, fat, and protein) 
in higher lactation numbers and a similar amplitude for fat and protein percent across 
lactation numbers. The results could be used for advising management decisions 
according to farm productivity goals. Furthermore, the trend and seasonality patterns 
can be used to adjust the production level in a specific state, year, and season for farm 
simulations to accurately project milk and milk components production. 

Keywords: Time series, calving time, production.

Dairy cow milk productivity in the US grew by 14%, from 19,895 kg to 22,761 kg, between 
2006 and 2016 (USDA-NASS, 2020). Also, there is a recognized seasonal pattern of 
milk yield and milk components (Salfer et al., 2019; Ferreira et al., 2020). Moreover, 
milk yield per cow varies significantly between states and regions (USDA‑ERS, 2021). 
Therefore, it is challenging to predict milk production by location, year, and season. 
Providing an accurate estimate of lactation performance would help simulation models 
at the farm and market level that inform management and policy actions. 

Milk and milk components productivity according to calving date can be represented as 
time series. Time series consist of a set of variables and the time-sequential information 
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reliant on them. Time series can be decomposed to identify trends and seasonal patterns 
(Hyndman and Athanasopoulos, 2018). This study aims to 1) quantify historical trends 
and seasonal patterns of milk and milk component production in the US; 2) cluster 
states with similar trends and seasonal patterns; and 3) describe the overall pattern 
for each cluster for future applications in simulation models.

We used a large dataset provided to us by the US Council on Dairy Cattle Breeding 
(https://www.uscdcb.com/). The dataset included Holstein lactation records with 
7 main variables: milk yield (kg/cow for a whole lactation), fat yield (kg/cow for a whole 
lactation), protein yield (kg/cow per lactation), lactation starting date, parity, US state, 
and lactation length (d) across an 11-year period (January 2006 to December 2016). 
We filtered lactation records so that each state had at least 100,000 lactation records, 
resulting in data from 17 states containing 9,184,086 million  lactation records from 
5,606,351 million Holsteins. We computed fat percent, protein percent, and ECM (IFCN, 
2010) from the milk, fat, and protein yields. Then, we averaged the lactation-length 
yields for milk, fat, protein, and ECM, as well as the fat percent and protein percent 
by the week when lactations started.  

We utilized R (R Core Team, 2020) to decompose the time series of each response 
using an additive model. The trend component indicated long-term change, the seasonal 
component reflected a cyclical process, and the residual component reflected short‑term 
influences across the series’ period (Hyndman and Athanasopoulos, 2018).

To categorize all state and parity combinations, we executed agglomerative hierarchical 
clustering using Ward’s minimal variance approach (Murtagh and Legendre, 2014) 
by minimizing the total variance. We determined the distance between each of the two 
time series in the original data using dynamic time warping distance and the trend and 
seasonality components using Euclidean distance. We clustered 18 time series groups 
into hierarchical cluster trees: 3 types of time series (original, trend, and seasonal) 
× 6 variables (milk yield, protein yield, fat yield, ECM yield, protein percent, and fat 
percent). For each one of these 18 time series groups, there were 3 parity groups (1st, 
2nd, and 3rd + lactations) ×17 states: 51 time series into one hierarchical cluster tree.

Each decomposed time series contained yearly trend and seasonality components. 
Figure 1 shows an example of the original ECM yield for New York state from 
3rd + lactations data along with their decomposed components. The clustering method 
allowed the decomposed  variable components to be grouped into clusters based 
on distance measurements of each pair of two time series. We identified the optimal 
number of clusters for each group to be 5 by tests on grouping indications. Figure 2 
shows the dendrogram of clustering results of ECM yield to illustrate clusters for the 
original, seasonal, and trend time series. 
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For the clusters on original data, ECM, milk yield, fat yield, and protein yield had similar 
patterns for classification where the 1st lactations were mostly classified into 2 clusters 
that were relatively independent from 2nd and 3rd + lactations. A visual evaluation of 
the 1st lactation clusters indicated a lower production level and less variability. The 2nd 
and 3rd + lactations of the same state were commonly classified into the same group, 
and the centroid patterns of the two major 2nd and 3rd + lactations clusters showed a 
difference in production levels. The average yield of the 1st lactation and 2nd lactations 
were 85.4% and 98.3% of the 3rd lactations yields, respectively. The classification 
pattern for fat percent and protein percent was different from all yields and from each 
other. Regardless of lactation number, the time series of the same state were clustered 
together for fat percent and therefore mainly influenced by the geographic factors rather 
than parity effect. In general, fat percent showed greater variability and less cyclicity 
than protein percent, suggesting that the protein percent was less sensitive to other 
factors than the seasonal factors. 

For clusters on trends, the classification patterns were like the original data in terms 
of grouping 2nd and 3rd + lactations from the same state into the same cluster for all 
yields (ECM, milk, fat, and protein), all lactation from the same state into the same 
cluster for fat percent, and 1st and 2nd lactations of the same state into the same cluster 
for protein percent. All yields cluster centroid patterns exhibited a rising. In contrast, 
the trends for fat and protein percent were relatively steady, and Texas even showed 
a decline trend in fat percent and protein percent. Florida had the lowest fat percent 
and protein percent levels, whereas California had the lowest fat percent level, but the 
highest protein percent for both 1st and 2nd lactations. 

For clusters on the seasonal pattern, all the yield clusters had one major cluster for 
each of 1st, 2nd, and 3rd + lactations. Since our time in each time series was representing 
the week of calving, we found the valley of the centroid patterns occurred during 
summer calvings (mainly the last week of July for 2nd lactation, and the 2nd week of 
July for 3rd lactation), whereas the peak occurred in late January for 2nd lactation and 
mid-December for 3rd + lactations. For the 1st lactation, milk yields centroid pattern did 
not vary much before August. All lactations in Virginia, the 2nd lactations in Illinois, and 
the 2nd and 3rd + lactations in Georgia showed a distinct milk yield centroid pattern in 
which the yield did not decrease until May. Fat yield in some groups, particularly 3rd + 

Figure 1. Time series decomposition of ECM yield for 3rd + lactations in New York . All units are in 
kg/cow/year.
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lactations showed a valley prior to late July. Protein yield for 3rd + lactations had a valley 
between late June and early July. These valleys for components occurred before the 
milk yield, leading to an earlier valley for ECM. The fat and protein percent, where the 
2nd and 3rd + lactations from the same state were clustered together, showed slopes 
throughout all lactations that did not appear to be different from one another. Peaks 
of the centroid patterns for fat percent happened during summer weeks (especially 
early August) and shortly after the protein percent peak. Protein percent exhibited a 
consistent and clear seasonal pattern across states and lactations, with peaks around 
late July to early August, a steady decline from November to March or April, and an 
increase thereafter. 

Figure 2. Dendrogram illustrating the groups formed by the cluster analysis for (a) the original data, (b) the 
seasonal, and (c) the trend of time series of ECM on calving date for each state and parity group. MI2 = 2nd 
lactation in Michigan.
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Time series of all yields (ECM, milk, fat, and protein) were largely influenced by the 
long-term effect of the trend and the periodic effect of seasonality. Analysis of the 
long-term trend showed a general upward pattern across the years for all yields 
and a general flat pattern across the years for fat and protein percent. Analysis of 
seasonal trends showed a stronger effect of seasonality for later lactations for all yields 
and that seasonality of fat and protein percent are not influenced by parity. Cluster 
results showed distinct groups with closer long-term trend and seasonality patterns 
among lactations and locations. The improved classification of the original and the 
decomposition parameters can assist with herd and cow management decisions 
demonstrating the importance of seasonal patterns in  production variables according 
to geographical location and parity.
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Individual cow resilience depends on the capacity of cows to respond to environmental 
disturbances. Together with management decisions, that affect the performance of 
these cows, and their environment they represent herd resilience. Until now, herd 
resilience can be estimated with the use of daily milk yield observations from an 
automated milking system (AMS), leaving conventional milking farms (CMS) without 
information on herd resilience. Therefore, this study investigated the possibility to predict 
dairy herd resilience using herd performance data generally available on AMS and 
CMS farms. Data from 585 Dutch AMS farms including herd performance variables: 
herd size, kg milk, proportion acidosis, proportion ketosis were used to predict herd 
resilience. As prediction model, a 5- fold cross validation Random Forest model with 
an extensive grid to finetune model parameter settings was used. Results show that, 
on average, herd resilience is predictable. Both the mean herd resilience as well as the 
predicted mean herd resilience were 1.30. The range, however, was much wider for 
herd resilience (0.70-1.86) than for the predicted herd resilience (1.10-1.50). Pearson 
correlation between herd resilience and predicted herd resilience was 0.55 ± 0.06. 
Thus, using only herd performance data that are generally available on farms (AMS 
and CMS), it is possible to predict herd resilience but not with a high accuracy.

Keywords: Dairy herd resilience, random forest, prediction, automated milking system.

Individual cow resilience indicates that cows are minimally affected by environmental 
disturbances, such as pathogens or extreme weather, and their production quickly 
recovers if they are affected (Colditz and Hine, 2016). The individual cow resilience 
together with management decisions that affect the performance of these animals 
and their environment represents herd resilience (Blanc et al., 2013). For dairy herds, 
this could be defined as that resilient herds show less milk yield deviations on herd 
level and thereby the herd as a whole is assumed to be less affected by disturbances. 
Individual cow resilience (Elgersma et al., 2018; Poppe et al., 2020) and dairy herd 
resilience can only be estimated on farms that use automated milking systems (AMS). 
For individual cow resilience, an expected lactation curve is fitted and less deviations 
from this fitted lactation curve indicates good individual resilience (Poppe et al., 2020). 
The estimated individual resilience is corrected for a fixed herd-year and year-season 
effect and a random genetic and error effect. This fixed herd-year effect is assumed to 
represent herd resilience and it has been shown to correlate with herd management 
decisions (Poppe et al., 2021). Estimation of individual or dairy herd resilience is only 

Abstract

Introduction



320

	 Predicting dairy herd resilience on farms 

Proceedings ICAR Conference 2022 Montreal

possible with the use of daily milk yield observations from AMS, and only after a full 
lactation. Still, a large portion of farms do not have an AMS but milk conventionally 
(in a milking parlour). Therefore, this study investigates the possibility to predict herd 
resilience with the use of a Random Forest model and herd performance variables 
usually available on farms with and without AMS.

An existing dataset including 2,644 Dutch AMS farms between 2011 and 2017 was 
available and consisted of a herd resilience indicator (fixed herd-year effect) and 
variables describing herd performance: kg milk, fat percentage, protein percentage, 
proportion with elevated somatic cell count, proportion ketosis, proportion of survival 
till second lactation, parity, herd size, etc. Incomplete records were removed resulting 
in a subset of 585 herds between 2012 and 2016 with complete information. These 
five herd-year estimates were averaged per herd, resulting in a mean herd resilience 
indicator per herd, which was assumed to represent herd resilience of a farm between 
2012 and 2016. Mean herd resilience was 1.30 ranging from 0.70 till 1.86, where low 
values indicates good herd resilience.

To predict herd resilience, a Random Forest model based on the algorithm of Breiman 
(2001) was used (R package RandomForest (Liaw and Wiener, 2002). A Random 
Forest model is a combination of randomly generated decision trees. Each individual 
tree performs quite poorly, but many trees combined into a ‘forest’ provides more 
reliable prediction results. Previously, the Random Forest algorithm has shown to 
produce reliable predictions with e.g. the prediction of dairy cow survival till second 
lactation (Heide et al,. 2019) and with the prediction of lifetime resilience in dairy cows 
(Ouweltjes et al., 2021). Finetuning of the Random Forest model parameters was 
done using an extensive grid: number of generated trees were 500, 1000, 1500, 2000 
and 5000, minimum number of herds per branch were 5, 10 and 15, and the random 
number of candidate variables at each split 1 till 34 (in total 34 predictive variables were 
available). Each of the 510 model combinations was trained on 80% of the data and 
validated on the remaining 20% of the data using a 5-fold cross validation stratified to 
herd. This means that  each herd was used four times in the training data and once 
in the validation set.

The best performing Random Forest model combination, based on the Pearson 
correlation between herd resilience and predicted herd resilience (0.55 ± 0.06), was 
the model that generated 500 random trees, contained a minimum number of five herd 
per branch and that randomly selected four predictive variables per split. The poorest 
performing model combination was the model that generated 1500 trees, contained a 
minimum number of 15 herds per branch and randomly selected one predictive variable 
per split (Pearson correlation estimated vs. predicted 0.52 ± 0.06). Considering that 
500 randomly generated trees and a minimum of five herds per branch are default 
parameters of the randomForest function (Liaw and Wiener, 2002) and the difference 
between the best and poorest performing model is small, the need for an extensive 
grid was not necessary for this dataset.

Material and 
methods

Results and 
discussion

Random Forest 
model finetuning
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Pearson correlation between herd resilience and predicted herd resilience  was 
0.98 +  0.00 for the 80% training datasets and 0.55 ± 0.06 for the 20% validation 
datasets (mean and standard deviation of the five k-folds). On average the Random 
Forest model performed quite well, since the average predicted herd resilience indicator 
of 1.30 was similar to the estimated herd resilience indicator (Table 1). However, the 
range of herd resilience was 0.70-1.86 while the range of predicted herd resilience 
was 1.10-1.50 (Table 1; Figure 1).

A method to improve prediction accuracy could be discretization, which is a pre-
processing step where continuous variables are transformed to discrete variables. 
Either transforming the continuous predictive variables or the continuous variable 
herd resilience might improve the prediction accuracy, since applying discretization 
in complex datasets has been shown to significantly improve model performance 
(Lustgarten et al., 2008).

Using only herd performance data that is generally available on farms it is possible to 
predict herd resilience but not with a high accuracy.

Prediction accuracy

Figure 1. Histogram of herd-year estimates (range 0.70-1.86) and predicted 
herd-year estimates (range 1.10-1.50) using a Random Forest model.

Conclusion

 
Table 1. Mean, minimum and maximum of estimated and predicted herd-year estimates. 
 

Herd-year effect Mean Min – Max 
Estimated 1.30 0.70 – 1.86 
Predicted 1.30 1.10 – 1.50 

 
 

. 
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Imputation of missing test day milk records and its use 
in genetic evaluation for milk yield in Mehsana buffaloes

Sujit Saha, Swapnil Gajjar, Nilesh Nayee, A. Sudhakar, G. Kishore and R.O. Gupta

National Dairy Development Board, Anand-388001, Gujarat, India

Under the smallholder dairying, the establishment of robust performance recording 
infrastructure for genetic evaluation programmes is quite challenging. The nationwide 
lockdown due to COVID-19 pandemic hampered the field performance recording 
activities to a great extent.The restriction in mobility of the field functionaries leads to 
the accumulation of considerable volume of missing TestDay Records (TDR). As the 
number of TDR is important for reliable breeding value (BV) estimates, the accumulation 
of missing values under any genetic evaluation program would be a concern for the 
implementers. Under such circumstances, imputation of TDR could provide an effective 
solution.The present study was carried out to assess the accuracy of the imputation 
of the missing TDR using Linear and Cubic spline interpolation in Mehsana Buffaloes 
and the effect of using this imputed TDR for BV estimation.The results of this study 
indicated a high correlation (0.89) between actual and imputed TDR. The BV estimates 
and their reliabilities obtained using a combination of actual and imputed TDR were 
found to be at par with that estimated using 100 per cent actual TDR.There was no 
impact on the ranking of Mehsana bulls. The study revealed that imputation of missing 
record through interpolation holds the potential of alternate performance recording 
system with bi-monthly/quarterly interval without compromising with the accuracy. 
Besides, it could also facilitate to cover more animals under recording with the limited 
available fund and create a reference population with a wide genetic base for successful 
implementation of genomic selection using recorded females.   

Keywords: Mehsana buffaloes, missing values, interpolation, breeding values.

Low capital investment, short operating cycle, steady returns etc. made dairying a 
preferred supplementary livelihood option for rural households in India. It has been 
contributing to the farmers in many ways like regular income from milk and milk products, 
insurance against drought, emergency cash requirements, household nutrition, fuel 
for cooking, manure for crops, draught power for farming etc. (Rath, 2019). In India, 
ownership of bovines is fragmented, with a large number of small and marginal farmers, 
each raising a few animals (with the average herd size of 5 or below) for draught 
(animal traction) or dairy purposes. Hence, implementation of long term and scientific 
genetic evaluation programmes through systematic performance recording is a quite 
challenging and costly proposition. It is estimated that, to implement a progeny testing 
programme, based on a young sire model, involving small herds of the dairy farmers, 
around $ 0.57 million (INR 40 million) per annum would be required to carry out Test 
Artificial Insemination of about 20 young bulls and other related field activities like 
Nominated AI, milk recording, measuring type traits, growth monitoring of daughters 
at six-monthly intervals and also for overall monitoring and supervision activities. It is 
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also estimated that out of the total budget, around 30-40% of the total fund is being 
utilized for the test day milk recording and milk component analysis at a monthly interval. 

The COVID-19 pandemic, which has emerged as one of the biggest pandemics in 
and around the globe has a devastating effect not only on health but also the global 
economy (Pathak, 2020). Due to nationwide lockdown, like in many industries, many 
routine activities under ongoing field-based genetic improvement programs were also 
got affected. To prevent the spread of infection, farmers even refused to allow AI 
technicians or milk recorders to enter their premises. Thus activities like AI delivery, 
monthly milk recording, milk sampling etc. were either stopped or carried out at the 
bare minimum level. It resulted into a considerable amount of data loss, till the activities 
resumed at its normal pace. Similar situation arises even during other unavoidable 
circumstances like natural calamities. 

The possible adverse impact of missing records in Breeding value (BV) estimates of the 
animals and it’s reliability, triggered a thought process to adopt a suitable alternative, 
which enables estimation of breeding values of the animals having less number of test 
day (TD) records without compromising the reliability of estimates. 

With this background, the present study was designed to assess the efficiency of 
different interpolation approaches to impute missing TD records (TDR) and impact of 
using such imputed records in estimating BV for milk yield. 

Mehsana buffaloes are one of the best milk breeds of buffalo in India (Gupta, 1997) 
and are spread in the northern part of the Gujarat State mainly Mehsana, Banaskantha 
and Sabarkantha districts (Prajapati et al., 2018).

The name of Mehsana buffalo was derived from the town “Mehsana” in the North 
Gujarat State. The Mehsana Buffalo breed was evolved by crossing Surti and Murrah 
buffaloes by the farmers to meet the need for higher milk and also for adaptation to 
the semi arid climate of Gujarat (Pundir et al., 2000).

Mehsana buffalo is recognized as a persistent milker, regular breeder and most 
economical to adverse climatic condition. According to the National Bureau of Animal 
Genetic Resources (NBAGR), the average lactation yield of Mehsana buffaloes is about 
1988 kg, with maximum yield reported to be 3597 kg (www.nbagr.res.in).

For Genetic improvement of Mehsana Buffaloes, NDDB initiated its first field-level 
progeny testing project (PT) in the year 1987 in association with The Mehsana District 
Cooperative Milk Producers’ Union Limited, Mehsana, Gujarat under Dairy Herd 
Improvement Programme Actions (DIPA). Under this project, a robust infrastructure 
was created for milk recording and genetic evaluation (Trivedi, 1997). Trained milk 
recorders were engaged to record test day milk yield at the monthly interval and collect 
milk samples for analysis of various milk components till 2012, the project tested about 
231 Mehsana bulls. Since 2012-13 to 2018-19, the PT activities were carried out under 
the supervision of NDDB in National Dairy Plan Phase–I, a World Bank funded central 
sector scheme of Govt. of India.

Materials and 
methods

About the “Mehsana” 
buffaloes 

Brief about genetic 
improvement 
program on Mehsana 
buffaloes
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The present study was carried out using 119066 test day milk records obtained from 
11962 Mehsana buffaloes recorded during September 1988 to September 2019 under 
Meshana Buffalo PT project implemented by The Mehsana Milk Cooperative Union 
Limited, Mehsana, Gujarat. The TDR for milk were retrieved from NDDB’s INAPH 
database. For the current study, only those Mehsana buffaloes having 3 or more test 
day records have been considered. Besides this, observations (with respect to various 
traits) falling outside the defined physiological range (outliers) were removed. Criteria 
for accepting records for analysis is given in Table 1.

Under this study to mimic the actual field scenarios pertaining to the missing test day 
records, actual test day records of the buffaloes were masked following four different 
approaches namely ST-1, ST-2, ST-3, ST-4 as shown in Figure 1. The number of 
records masked under different strategies is elaborated in Table 2. 

The individual animal-wise masked records were imputed using two different 
interpolation methods namely Linear interpolation and Cubic spline using zoo package 
(Zeileis et.al, 2020) of R software. The degree of association between actual test-day 
records and imputed test day records was assessed through correlation estimate. The 
imputation accuracy of linear interpolation and cubic spline interpolation was expressed 
in terms of Mean Absolute Error (MAE) and Root Mean Sum Square Error (RMSE).

BV along with it’s reliability of the recorded she buffaloes and buffalo bulls were 
estimated using DMU software (Madsen and Jensen, 2014) applying random regression 
(with legendry polynomials) test day model as mentioned below:

 

where,

ythijmnklis the test-day milk yield of animal k recorded on day t within fixed village subclass 
h, fixed YS (year of calving x season of calving) subclass i, fixed Age at calving (6 
months grouped) subclass j, random HYMR (herd x year of recording x month of 
recording) subclass m and random owner (at the time of first milk recording) subclass n;

β  lare fixed regression coefficients;

ukl and pekl are the lth random regression for animal additive genetic and permanent 
environmental effects, respectively, for animal k;

Φktl is the lth legendre polynomial for the test day record of cow k made on tth day in milk;

nf is the order of polynomials fitted as fixed regressions (0 to 2);

nr is the order of polynomials for u and pe effects (0 to 2);

ethijmnkl is the random residual effect.

Source of data

Imputation of missing 
records through 
interpolation

Breeding value 
estimation
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For analysis of each subset of animals, two types of data files were constructed. One 
with 100% actual test day record TDR and another with the combination of actual and 
imputed TDR. 

The degree of association of BVs (for both the she buffaloes and breeding bulls, 
respectively) predicted using the combination of imputed and actual TDR with the BV 
estimates obtained using 100% actual TDR was studied through Pearson’s correlation 
coefficient (Snedecor and Cochran, 1989). In addition to that ranking of these animals 
based on BV was also compared using Spearman’s rank correlation coefficient (Steel 
and Torrie, 1960). 

The schematic diagram of the design of the experiment is elaborated in Figure 2. 

Table 1. Acceptable Physiological range for accepting records for analysis. 

 
SN Traits Acceptable Range 
1. Days in Milk 5-330 days 
2. Test Day milk yield 1-40 kg 
3. Age at first calving 20-80 months 

 
 
 
Table 2. Strategies for Masking of Test day records for different groups of animal. 
 

Strategy 
Animals 

considered 

No. of eligible 
buffaloes in 
the subset 

Total TD 
records 

No. of TD 
records masked 
& subsequently 

imputed Remarks 

ST-1 
Having 10 TD 
records 2915 29150 11660 

Alternate TD records 
masked (40% of the total 

TD records) 

ST-2 
Having 10 TD 
records 2915 29150 17490 

alternate two TD records 
masked (60% of the total 

TD records) 

ST-3 
Having 3 to 10 
TD records 6120 54495 29545 

54% of the total TD 
records masked 

ST-4 
Having 3 to 11 
TD records 11916 118252 64321 

54% of the total TD 
records masked 

 
 
 
Table 3. Correlation coefficient between true and imputed test day 
milk records. 
 

 Imputation method 
Strategy Linear Interpolation Cubic spline 
ST-1 0.899* 0.897* 
ST-2 0.890* 0.888* 
ST-3 0.885* 0.867* 
ST-4 0.883* 0.876* 
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Figure1. Test Day Milk record (TDR) masking strategies. Similarly 
animals having TDR between 4-8 are masked in different possible 
combinations.

 

 
Similarly animals having TDR between 4-8 are masked in different possible combinations  
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The correlation between imputed TDR (obtained using Liner interpolation and cubic 
spline method) and the actual test day records are presented to Table 3.

The obtained result indicated a statistically significant and higher degree of association 
(correlation coefficient >0.86) between imputed TDR with that of actual TDR in Mehsana 
buffaloes. However, the correlation was observed to decline when the animals having 
<10 TDR ( i.e. 3 to 9 TD records) were masked for imputation.

Comparison of the Linear and Cubic spline interpolation approach expressed in terms of 
the correlation between actual TDR and imputed TDR and it was found to be marginally 
higher in linear interpolation than cubic spline interpolation. 

The imputation accuracy of Linear interpolation and Cubic spline interpolation expressed 
in terms of MAE and RMSE was found to be very close (Table 4). However, the MAE 
and RMSE values were found to be marginally lesser in case of Cubic spline approach.

The BV of the recorded she buffaloes, as well as breeding bulls, was estimated using 
actual TDR and the combination of imputed and actual TDR, separately. Heritability 
estimates of test day milk yield obtained under different masking strategies were given 
below in Table 5.

As presented in Table 5, the heritability estimate of milk yield using 100% actual TDR 
was found to be 0.26. However, with the use of a combination of imputed missing 
data along with actual test day records, heritability estimates were observed to reduce 
marginally (0.24-0.25), which may be due to loss of variance in the test day records 
due to imputation using interpolation. Heritability estimate thus obtained in this study 
was found to be slightly higher than the estimate reported by Galsar et al. (2016) and 
Prajapati et al. (2018) in Mehsana Buffaloes, whereas, Breda et al. (2010) reported 
TD milk yield heritability between 0.19 -0.31 in Murrah buffaloes.

Figure 2. Design of Experiment- a schematic diagram.

Results and 
discussion
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The correlation coefficient between the BV estimates obtained using 100% actual TDR 
and a combination of true test day cum imputed TDR are presented in Table 6 (for she 
buffaloes) and Table 7 (for breeding bulls), respectively.  

The results indicated that the replacement of a part of actual TDR with imputed TDR did 
not have any adverse impact on BV estimation. In case of she buffaloes, the correlation 
was observed to vary between 0.97 to 0.99 under various strategies for both linear 
interpolated as well as cube spline interpolated data. 

While in the case of breeding bulls, the correlation coefficient for all the cases were 
observed to be 0.99. All the correlation coefficient estimates were found to be statistically 
significant. The correlation between the rankings of the animals as estimated by 
spearman’s rank correlation were found to be very high (around 0.98). 

Ranking of the top 10 Mehsana breeding bulls based on BV calculated using actual 
TDR and combination of actual and imputed TDR are presented in Table 8 and Table 
9, respectively for linear interpolation as well as spline cube interpolation. The results 
revealed that there was no marked change in the BV estimates as well as the ranking 
of the breeding bulls due to incorporation of imputed TDR for data analysis.

Panchal et al. (2019), studied the impact of different milk recording strategies on sire 
evaluation in HF crossbred cattle and found monthly test day milk recording as an 
optimum strategy for milk recording in genetic evaluation program and concluded that 
a bimonthly recording can be considered with caution under the conditions wherein 
deploying monthly test day milk recording is not feasible. The rank correlation between 
sire breeding values for 305 days milk yield was reported to be 0.79 between monthly 
milk recording and bimonthly recording strategies, which was lower than the estimates 
observed in the current study (>0.97). It indicated that in case of presence of the missing 
TDR, imputation of the missing values with interpolation and its use in breeding value 
estimation was quite effective in ensuring greater reliability of estimate rather than 
excluding the same from the analysis.

Based on the results obtained in the present study, it can be concluded that under 
adverse situations like COVID-19 pandemic or other natural calamities, when regular 
monthly milk recording activities in the field level are not feasible, imputation of the 
missing records can be carried out through a suitable interpolation approach, and such 
imputed data can be effectively utilized in combination of available actual records for 
genetic evaluation of animals without any adverse impact on breeding value estimation 
and its reliability. 

Under smallholders’ dairy production systems, where dairy animals of important breeds 
are spread across the country under varied environmental conditions, covering a 
maximum number of animals under performance recording is quite challenging and a 
costly affair. In such conditions, a performance recording system with the frequency of 
recording at bi-monthly or quarterly interval holds the potential to include of maximum 
possible number of animals of a particular breed under milk recording program with the 
available funds and also to study the influence of Genetic x Environment interaction, 
In such scenarios, the missing monthly records could be imputed through interpolation 
and used for genetic evaluation purpose. Further, bringing the maximum number of 
animals under systematic milk recording program would also enable the creation of a 
large reference population with a wide genetic base for successful implementation of 
Genomic selection using recorded females.   

Conclusion
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Table 4. MAE and RMSE estimate for Linear and Cubic Spline Interpolation. 
 

Interpolation approach MAE RMSE 
Linear Interpolation 0.713 0.996 
Cubic Spline 0.706 0.995 

 
 
 
Table 5. Heritability estimates (h2) of test day milk yield with 100 per cent actual test day 
record vis a vis combination of actual & imputed test day records. 
 

h2 

Strategy Type of TDR used 
Linear 

Interpolation Cubic spline 
ST-1 0.25 0.25 
ST-2 0.25 0.24 
ST-3 0.24 0.24 
ST-4 

Actual 
+ 

Imputed 
0.26 0.25 

All animals  100% actual 0.26 
 

 
Table 6. Correlation coefficient between EBVs obtained using actual and imputed Test day 
records in Mehsana buffaloes. 
 

 Pearson correlation Rank correlation 

Strategy 
Linear 

Interpolation 
Cubic 
spline 

Linear 
Interpolation 

Cubic 
spline 

ST-1 0.997* 0.997* 0.996* 0.996* 
ST-2 0.993* 0.994* 0.992* 0.993* 
ST-3 0.977* 0.971* 0.973* 0.968* 
ST-4 0.980* 0.982* 0.977* 0.979* 

(*P<0.05) 
 
 
 
Table 7. Correlation coefficient between EBVs obtained using actual and imputed Test day 
records in Mehsana Breeding Bulls. 
 

 Pearson correlation Rank correlation 

Strategy 
Linear 

Interpolation Cubic spline 
Linear 

Interpolation Cubic spline 
ST-1 0.999* 0.999* 0.998* 0.999* 
ST-2 0.996* 0.997* 0.995* 0.996* 
ST-3 0.991* 0.991* 0.989* 0.990* 
ST-4 0.982* 0.986* 0.977* 0.982* 

(*P<0.05) 
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